Categories
Random

“Numerical methods for differential equations” online poster session

I had the great pleasure of teaching the course Numerical methods for differential equations for the fourth time in the winter of 2022. This time, it was part of the AARMS Advanced Course Program, which allowed students from outside of the University of New Brunswick to participate.

In lieu of a final exam there was a final project where students could study any topic of interest using the methods learned throughout the term. Part of the final submission was a poster similar to those presented at a scientific conference. I think these turned out great, and I’m happy to share a selection (with the students’ permission) below. Enjoy!

Categories
Random

University Research Scholar

I got some good news the other day: I have been selected to be a University Research Scholar at the University of New Brunswick from July 1, 2022 – June 30, 2024 (pending final approval by the Board of Governors).

The award of University Research Scholar honours members of the active faculty complement of the University of New Brunswick (UNB) who have demonstrated a consistently high level of scholarship, and whose research is, or has the potential to be, of international stature.

UNB website

I’d like to sincerely thank all my colleagues who nominated me for this and wrote letters of support. I’d also like to congratulate Aurora Nedelcu from the Department of Biology at UNB (Fredericton) for also being named to this position.

Here is a list of past award winners.

EDIT: Guess this is official now.

Categories
COVID-19

Thanks for the shout-out Dr Russell!

It was fun for UNB to get a shout out from New Brunswick’s Chief Medical Officer of Health Dr Jennifer Russell during the February 8 COVID-19 briefing:

This was at around the 6:45 mark. It has truly been a pleasure working with the folks at NB public health on COVID modelling, and I’m very much looking forward to our future collaborations.

Categories
COVID-19

Recapping a busy COVID modelling week

Last week was very busy in terms of the public release of COVID modelling I have been working on for various governments in Canada. First off was a press conference from the Government of Prince Edward Island on Wednesday, January 26:

About 35 minutes in, you can find Dr Heather Morrison (Chief Health Officer) discussing recent forecasts for new cases and hospitalizations under current conditions, and various hypothetical scenarios considering the effects of the January 19 circuit breaker in PEI.

I have also been doing some modelling for the Northwest Territories (NWT). On the government’s website, you can find a webpage called The Use of Mathematical Modelling in the Northwest Territories (NWT). This page contains a concise summary of NWT modelling results as of Wednesday, January 26. We plan to update this webpage regularly as more data becomes available.

Forecast of hospitalizations in the NWT from Wednesday, January 26

Finally, Dr Jennifer Russell (Chief Medical Officer of Health of New Brunswick) presented a modelling slide at a Thursday, January 27 press conference (around 5 minutes in):

This chart compared model projections for hospitalizations during New Brunswick’s level 3 restrictions and actual data.

I am very pleased to acknowledge that all the above modelling was done in cooperation with government scientists from multiple jurisdictions. The underlying modelling framework is the result of a yearslong effort in collaboration with the New Brunswick Department of Health. The work has also been supported by the National Sciences and Engineering Research Council of Canada (NSERC), the Canadian Institutes of Health Research (CIHR), the New Brunswick Health Research Foundation (NBHRF), Mathematics for Public Health (MfPH), the Atlantic Association for Research in the Mathematical Sciences (AARMS), and the Government of New Brunswick.

Categories
Random

Pumpkins

A retrospective of the pumpkins since Halloween 2013. The stranger choices were definitely due to my daughters.

Categories
COVID-19 Visualizations

How memes go viral

For over a year now, my main research focus has temporarily shifted away from gravitational physics towards the mathematical modelling of COVID-19 (for obvious reasons). Although this might seem like a big change, the two areas actually share a lot in common. One of the main techniques for understanding cosmological dynamics as well as the spread of infectious disease is the theory of dynamical systems, which has played a key role in my research for many years. Similarly, Bayesian statistics are extremely useful for analyzing both astrophysical observations and COVID case counts.

I have also been interested in how various phenomena spread on graphs. Several years ago, I made this video on how memes go viral on the internet:

The idea is that there is a social network online describing the connections between individuals. If one person becomes interested in something (back then, the “ice bucket” challenge was in vogue), they might share it with their contacts, who in turn might share it with other people, and so on.

You might be thinking that this process sounds an awful lot like how an infectious disease spreads. The purpose of the above video is to push this analogy as far as we can by creating a disease model of how a “meme” spreads on the internet.

How about actual infectious diseases? Adapting the techniques in the video to model COVID-19 in New Brunswick was the topic of a problem at the 2021 AARMS Industrial Problem Solving Workshop. I presented this problem in collaboration with The Black Arcs, a local Fredericton company with expertise in detailed computer simulations of daily life in cities and towns. This project is ongoing, and is starting to yield some exciting results.

Categories
Visualizations

4-dimensional polyhedra

Several years ago (for reasons that I can’t really remember) I became interested in 4-dimensional polyhedra. I made some animations that I like looking at, and I wanted to try out my new blog, so here we are…

4-dimensional polyhedra are the higher dimensional generalizations of three dimensional objects such cubes and tetrahedrons. You can think of them as solid objects that are highly symmetric; that is, their edges all have the same length, their faces are all congruent, and the angles at all of their vertices are the same. A familiar 3-dimensional example is a cube whose consists of six identical 2-dimensional regions, each of which is a square. The 4-dimensional version of cube is called a tesseract (or 8-cell). It’s boundary consists of 8 identical 3-dimensional regions, each of which is a cube.

How can you visualize a 4-dimensional object? Well, strictly speaking this is not something that human ought to be able to do, since our brains are trained to operate in a 3-dimensional world. But we can play a simple trick to draw pictures of 4 dimensional polyhedra by looking at their shadows. In the real world, the shadow of 3-dimensional object on a wall is 2-dimensional, and can therefore be accurately represented on a piece of paper. So, it is therefore possible to represent a 4-dimensional object by imagining what its shadow would look like on a 3-dimensional “screen”.

That’s exactly what the animated gifs shown below demonstrate: a 3-dimensional rendering of the shadow of several examples of these objects. Each of the polyhedra is rotating in 4-dimensional space.

In order, the polyhedra depicted are the 5-cell (two views), the 8-cell (two views), the 16 cell, the 24 cell, and the 120 cell. The animations were prepared using Maple.