Gravitational waves from braneworld black
holes: the black string branewor|d

Sanjeev S. Seahra

Abstract In these lecture notes, we present the black string modebedizeworld
black hole and analyze its perturbations. We develop theeifetion formalism for
Randall-Sundrum model from first principals and discussvieek field limit of
the model in the solar system. We derive explicit equatidmaation for the axial
and spherical gravitational waves in the black string bamlgd. These are solved
numerically in various scenarios, and the characteriate&stime signal from a black
string is obtained. We find that if one waits long enough aftene transient event,
the signal from the string will be a superposition of nearlgnachromatic waves
with frequencies corresponding to the masses of the Kaldea Knodes of the
model. We estimate the amplitude of the spherical compasfehese modes when
they are excited by a point particle orbiting the string.

1 Introduction

Braneworld models hypothesize that our observable urévessa hypersurface,
called the ‘brane’, embedded in some higher-dimensionategime. Standard
model particles and fields are assumed to be confined to time bndnile gravita-
tional degrees of freedom are free to propagate in the fghédni-dimensional ‘bulk’.
The phenomenological implications of these models have beensively studied
by many different authors over the past decade, with greaheasis being placed
on any observational consequences of the existence of laogsibly infinite, extra
dimensions.

There are a number of different braneworld models, but gerloae of the best
studied is the Randall-Sundrum (RS) scenario (15; 16). 8hee two variants of
the model involving either one or two branes, but the comnssu@ption in both
setups is that there is a negative cosmological constaheibulk characterized by
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a curvature scalé. The great virtue of the model is that the gravity behaves lik
ordinary general relativity (GR) in ‘weak field’ situatiorise., when the density of
matter is small or scale of interest is large. In particudae recovers the Newtonian
inverse-square law of gravitation in the RS model as lonfpaséparation between
the two bodiess> /. This leads to a direct laboratory constraint on the bulkature
scale, since Newton’s law is known to be valid on scales faiggn around 50m
(20).

The RS model is also consistent with various astrophysesistof GR in the
weak field regime, including the solar system tests such apdhihelion shift of
Mercury or time delay experiments using the Cassini spafecn the cosmolog-
ical side, one can also demonstrate that the RS predicttorteé dynamics of the
scale factor or the growth of fluctuations match the predictiof GR as long as
the Hubble horizorH 1 is less that the AdS length scaleHence, the RS model
matches conventional theory in the low-energy universe.

The ability of the RS model to mimic GR in these cases is bottufious and
somewhat surprising. The introduction of a large extra disien is not a trivial
modification of standard theory, and before the work of R&n&lé&Sundrum the
conventional wisdom was that such models could not be mabe tonsistent with
the real measured behaviour of gravity. The fact that a fifthethsion can be made
to conform to what we observe is part of the reason for theyflafiactivity on the
RS model since its inception. It also raises an interestioglpm: The correspon-
dence between GR and the RS scenario must fail at some pioicg, at the end
of the day they have very different geometric setups. In veitaations does this
breakdown occur, and are there any associated obserdatignatures that we can
use to constrain the RS model?

We mentioned above that RS cosmology matches GR cosmology #¢ 1.
Thus, we are led to look for deviations from standard theigoismological epochs
with H¢ > 1. This corresponds to the very high-energy radiation epattich is
just after inflation and before nucleosynthesis. People l@aked at modifications
to the background expansion, dynamics of gravitationalesd®; 11; 17), and the
growth of density perturbations in the high-energy epoghAll of these phenom-
ena show some departures from GR, but as of yet there has bexeam observa-
tional test proposed that could either rule out or rule inRiS&model.

Hence, we need to look to other ‘strong field’ scenarios tottes model. One
possibility is to look at black holes in the Randall-Sundromadel. We know that
these objects are not describable in the Newtonian limit Bf € one might ex-
pect that braneworld black holes to exhibit observable atens from the ordi-
nary Schwarzschild or Kerr solutions. However, there is gnaoblem with using
black holes a probe of braneworld models: There is no knogasonable’ brane-
localized black hole solution in the RS one brane scenatie.lack of a solution is
not for lack of trying, many authors have attempted vari@ehiiques to find one.
One of the first attempts was using the 5-dimensional blagkgssolution as a bulk
manifold (2). However, it was demonstrated that such sohstiwvere subject to the
famous Gregory-Laflamme instability (8), which is a tachigomode with a long
wavelength in the extra dimension. Others have tried to fiathd black holes nu-
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merically (14), but success has been limited to small mage®isM <« ¢. Several
have conjectured that the lack of a solution in the one brase bas to do with the
AdS/CFT correspondence (5; 19).

However, the situation is somewhat better in the two brase.daturns out that
itis possible to find a stable braneworld model in this casd that the brane geom-
etry is exactly 4-dimensional Schwarzschild (3; 4; 18).d.tke model considered
in (2), this is based on the 5-dimensional black string. Theg8ry-Laflamme in-
stability is evaded by the infrared cutoff introduced by #ezond brane; i.e., the
model is stable if the branes are close enough togetheruBethe geometry on the
brane is identical to that of the Schwarzschild metric, tluelet is automatically in
agreement with any test of GR sensitive to the backgroundhgay only; such as
light-bending, perihelion shifts, time delays, etc.

Hence, we need to look at the perturbative aspects of the Inmdbtain differ-
ences with ordinary GR. In particular, we are interestechengravitational waves
(GWs) emitted from these black strings when they are disgl&oen their equilib-
rium configuration. Of primary importance is the issue of thiee or not any devia-
tions from the predictions of GR are observable by GW detsctach as LIGO or
LISA. These issues are the subject of these lecture notes.

In §2 we introduce the RS model and the black string branewanlg3) we de-
scribe how to perturb the model and derive the relevant eapsof motion. In§4,
we show how to separate variables in the governing partfdrdntial equations
(PDEs) by introducing the Kaluza-Klein (KK) decompositidn §5, we consider
the limit under which we recover GR. K6, we define the complete mode decom-
position in terms of KK modes and spherical harmonics uséddmest of the notes.
In §7, we consider homogeneous solutions to the axial equadiomstion and de-
termine (via simulations) the characteristic GW signadouaed by the string. 168,
we consider the spherical sector of the GW spectrum excitegberic sources and
discuss the Gregory-Laflamme instability in detail.§® we write down explicit
equations of motion for the spherical GWs emitted by a pointigia orbiting the
black string and consider their numeric solution§l®, we estimate the amplitude
of Kaluza-Klein radiation emitted from the black string fargiven point particle
source. Finally, ir§11 we give a brief summary and outline some open questions.

2 A generalized Randall-Sundrum two brane model

In this section, we present a generalized version of the &kB8dindrum two brane
model in a coordinate invariant formalism. We begin by ainlg the geometry of
the model, the action governing the dynamics, and the egdigld equations. We
then specialize to the black string braneworld model, whidhbe perturbed in the
next section.
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2.1 Geometrical framework and notation

Consider a (4+1)-dimensional manifdl@#, g), which we refer to as the ‘bulk’. One
of the spatial dimensions o# is assumed to be compact; i.e., the 5-dimensional
topology isR* x S. We place coordinateg* on.# so that the 5-dimensional line
element reads:

ds2 = gagdxdxE. 1)

We assume that there is a scalar funci@that uniquely maps points i into the
intervall = (—d,+d]. Here,d is a constant parameter that is one of the fundamental
length scales of the problem. The gradient of this mappi® is spacelike,

AP I >0, 2)

and is tangent to the compact dimensiont This scalar function defines a family
of timelike hypersurfaces(x*) =Y, which we denote byy. The two submani-
folds at the endpoints df >4 andX_g, are periodically identified.

Let us now place 4-dimensional coordinaz&sn each of theey hypersurfaces.
These coordinates will be related to their 5-dimensionahterparts by parametric
equations of the formx® = xA(2%). We then define the following basis vectors

A A
e = o = e ey =0, nna=+1. (3)

0z’ VO BD

The tetrade]; is everywhere tangent tBy, while n* is everywhere normal tdy.
The projection tensor onto th®, hypersurfaces is given by

Oag = Oag — Nang,  Ngag = 0. (4)

From this, it follows that the intrinsic line element on eaxftthe >y hypersurfaces
is
ds} = QupdZ?dZ®, qgup = e@eEQAB = eQeEgAB. (5)

The objeci,g behaves as a tensor under 4-dimensional coordinate traretfons

Z — 7 (2#) and is the induced metric on th& hypersurfaces. It has an inverse
P that can be used to defief:

€A = gABaneE7 o =a"ays = e,‘{e/g. (6)

Generally speaking, we define the projection of any 5-tefiggronto thezy
hypersurfaces as
Tap = e‘f}eETAB, (7)

where the generalization to tensors of other ranks is olsvidhe 4-dimensional
intrinsic covariant derivative of, is related to the 5-dimensional covariant deriv-
ative of Tag by

[OaTuvlq = €€} €] Oagia Tec, (8)
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where the notatioft - - | means that the quantity inside the square brackets is calcu-
lated with theg, g metric.
Finally, the extrinsic curvature of eadly hypersurface is:

Kag = g5 0cng = 3£n0as = Kea, N*Kag =0,
K’JB = e‘f}egKAB = eﬁeEDAnB. (9)

2.2 The action and field equations

We label the hypersurfaces¥t=y, = 0 andY =y_ = +d as the ‘visible brane’

>+ and ‘shadow braneZ—, respectively. Our observable universe is supposed to
reside on the visible brane. These hypersurfaces divideuldnto two halves: the
lefthand portion.z. which hasy € (—d,0), and the righthand portion which has
y € (0,+d). The action for our model is:

- iy [P ] [PR-an

" A
1 1 17 1y
+£Zi§/ <$£—2/\£—K2[K]8)+2/$|_+2/$R. (10)
N >¢€ M

5

In this expression;,<52 is the 5-dimensional gravity matter couplinfls = —6k? is
the bulk cosmological constant;® = +-6k/k2 are the brane tensions, ahg 1/k s
the curvature length scale of the bulk. Als#;* is the Lagrangian density of matter
residing onZ*, while .4 and. %k are the Lagrangian densities of matter living in
the bulk. Note that the visible brane in our model has pasitansion while the
shadow brane has negative tension.

The quantity[K]* is the jump in the trace of the extrinsic curvature of fiie
hypersurfaces across each brane. To clarify, suppos@w@f and 0///5 are the
boundaries of#_ and.#r coinciding with=*, respectively. Then,

—q*PKyp (11a)

o’

—q"PKgp e (11b)
M

We can now write down the field equations for our model. Sgttive variation
of Swith respect to the bulk metrig"® equal to zero yields that:

Gag — 6K?gag = K2 [0(+Y) T+ 0(—Y) TAs] »
2 O(vV-94R)
V=9 og®

LR
Tag =—

(12)
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Meanwhile, variation ofS with respect to the induced metric on each boundary
yields

Qag = { [Kas] + 2kdas + K& (Tas — %TQAB)}jE =0, (13a)
a 2 8(v—a2)\"
TAiB:eAeg{—\/_—q(\é/;%)} : (13b)

Here, the{---}* notation means that everything inside the curly brackeevas-
uated at>*. We see that (12) are the bulk field equations to be satisfiethéy
5-dimensional metrigag, while (13) are the boundary conditions that must be en-
forced at the position of each brane. Of course, (13) arelgithp Israel junction
conditions for thin shells in general relativity.

In what sense is our model a generalization of the RS setug?ofiginal
Randall-Sundrum model exhibitedZa symmetry, which implied that#, is the
mirror image of Zr. Also, in the RS model the bulk was explicitly empty. However
since we allow for an asymmetric distribution of matter ie thulk, we explicitly
violate theZ, symmetry and bulk vacuum assumption.

2.3 The black string braneworld

We now introduce the black string braneworld, which B,ssymmetric solution of
(12) and (13) with no matter sources:

L= Lr=LT=0. (14)

Here, we use= to indicate equalities that only hold in the black string kiround.
The bulk geometry for this solution is given by:

1
f(r)
f(r)=1—2GM/r, a(y)=e V. (15b)

dsZ = a?(y) | —f(r)dt® + —— dr? +r2dQ?| 4 dy?, (15a)

Here,M is the mass parameter of the black string & ¢p/Mpy is the ordinary
4-dimensional Newton’s constant. The functi@rused to locate the branes is trivial
in this background:

(%) =, (16)

which means that th&* branes are located git= 0 andy = d, respectively. The
2y = 3y hypersurfaces have the geometry of Schwarzschild bladshahd there
is 5-dimensional line-like curvature singularityrat O:

M 2e4k|y\

2
RAPRagcp = 48 MeT +4

= oK. (17)
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tension = +487/G¢?
tension = —487/G(?
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Fig. 1 A schematic illustration of the black string braneworld

Note that the other singularities gt= +oo are excised from our model by the re-
strictiony =Y € (—d, d], so we will not consider them further. An illustration of the
black string braneworld background is given in Figure 1.

We remark that it is actually possible to replace the 4-roétrisquare brackets
in (15) by any 4-dimensional solution B,z = 0 and still satisfy the 5-dimensional
field equation. That is, we could have

dsZ = a(y)?dske, + dy?, (18)

wheredsz,,, is the line element corresponding to the Kerr solution footating
black hole. Such a solution is known as the rotating bladkgtThe dynamics of
perturbations of the rotating black string are still an opgeastion due to the extreme
complexity of the governing equations of motion.

Finally, note that the normal and extrinsic curvature aiséed with the>y hy-
persurfaces satisfy the following convenient properties:

Na=0ay, MOAn®=0, Kag= —Kdag. (19)

These expressions are used liberally below to simplify fdem evaluated in the
black string background.

3 Linear perturbations

We now turn our attention to perturbations of the black sbngneworld. We first
describe the perturbative variable we use to describe theifitions of the system,
then we linearize the bulk field equations and junction cooa. We finish this
section by rewriting the perturbative equations of motioraiparticularly useful
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form. Note that while we work from first principals §8-55, similar calculations
and results have appeared many times in the literature;hgeseiminal works by
Randall & Sundrum (15) and Garriga & Tanaka (6), for example.

3.1 Perturbative variables

We are ultimately interested in the behaviour of gravitaiovaves in this model,
which are described by fluctuations of the bulk metric:

0aB — 0aB + hag, (20)

wherehag is understood to be a ‘small’ quantity. The projectionhgf onto the

visible brane is the observable that can potentially be oredsn gravitational wave
detectors. But it is not sufficient to consider fluctuatiamghie bulk metric alone —
to get a complete picture, we must also allow for the pertishaof the matter
content of the model as well as the positions of the branes.

Obviously, matter perturbations are simply described T, TR, andT,itB
stress-energy tensors, which are considered to be smaititieis of the same order
ashpag. On the other hand, we describe fluctuations in the brandi@asivia a
perturbation of the scalar functiah:

DA — y+ E(XP). (21)
Here,& is a small spacetime scalar. Recall that the position of baae is implic-

itly defined by®(x*) = y... Hence, the brane locations after perturbation are given
by the solution of the following foy:

YHE| R yy)RE| =y (22)
Y=Y+ y=y+

However, note thay — vy, is of the same order &5, so at the linear level the new
brane positions are simply given by

y=y:—¢&| . (23)
Y=Y+
Hence, the perturbed brane positions are given by the bremdiy scalars:
§E-g| . a0 (24)
Y=Y+
Note that becaus&™ andé ~ are explicitly evaluated at the brane positions, they are
essentially 4-dimensional scalars that exhibit no depecelen the extra dimension.

Having now delineated a set of variables that parametdrzéuctuations of the
black string braneworld, we now need to determine their gojus of motion.
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3.2 Linearizing the bulk field equations

First, we linearize the bulk field equations (12) about trezklstring solution. No-
tice that (12) only depends on the bulk metric and the bulktenatistribution.
Hence, the linearized field equations will only invollags, Th; and TR,. The ac-

tual derivation of the equation proceeds in the same marsier&dimensions, and
we just quote the result:

0COchag — O€Oahsc — OCOghac + DalshCc — 8kPhpg = —2k25R4k (25)

where
SRuk = O (+y) (TR — 1TRgas) + O(—y) (Ths — 2T  gag). (26)

The wave equation (25) is valid for arbitrary choices of gaagd generic matter
sources. If we specialize to the Randall-Sundrum gauge

Dhag =0, ha=0, hag=elefhyg, 27)
eg. (25) reduces to
Apg®Phep + (GMa)?(£2 — 4k?)hpp = —2(GMa)?k2 88k, (28)
where we have defined the operator
Ape®P =(GMa)?[q"NOumaRgRaB Op + 2 URaCe")
—(GMa)?efef [ 8485 0P 0, + 2Ra¥y’ | G
—(GM)%efef [ 8485 0° T + 2Ra¥y° 2 (29)
Here,Racgp is the Riemann tensor axy, which can be related to the 5-dimensional
curvature tensor via the Gauss equation
“Runpg = oy AR A5a8RAscD + 2KnipKg)n - (30)

On the second line of (29) the 4-tensor inside the squardeétsis calculated using
Oap- We can re-express this object in terms of the ordinary Sctsehild metric
gap, Which is conformally related tq,g via the warp factor:

Uap = azgaﬁv (31a)
9updZ?dZ? = —fdt? + f1dr? +r2dQ2. (31b)

The quantity in square brackets on the third line of (29) iswdated fromgo,ﬁ.l
One can easily confirm thadiagCP is ‘y-independent’ in the sense that it commutes

1 Unless otherwise indicated, for the rest of the paper any texisogression with Greek indices
should be evaluated using the Schwarzschild metyjc
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with the Lie derivative in the direction:
[(4ApCP, £4] = 0. (32)

In addition, the(GM)?2 prefactor makeg#as°P dimensionless.
Notice that the lefthand side of (28) is both traceless andif@stly orthogonal
to A, which implies the following constraints on the bulk matter

SRk = efef bk qafshuk — o, (33)
In other words, our gauge choice is inconsistent with bulktendhat violates these
conditions. If we wish to consider more general bulk matiez, cannot use the
Randall-Sundrum gauge.

3.3 Linearizing the junction conditions

Next, we consider the perturbation of the junction condgi@l3). These can be
re-written as

+
QABf{[ OaNg) — Nia/n Dcn‘B]ikqAHKs(TAB”TqAB)} —0. (34

We require thaQxg vanish before and after perturbation, so we need to enfbete t
the first order variatiodQx is equal to zero.

In order to calculate this variation, we can regard the te®g; as functionals
the brane positions (as defined @Y, the brane normaisa, the bulk metric, and the
brane matter:

QKB = QKB(q)anM7gMN7TI\:/ItN)) (35)
from which it follows that
0Qns 0QnB 0QaB 0Qns *
+
0Qng = { 50 o0+ e onc + 590 dgcp + 5Ten 6TCD}0 . (36)

The {---}5 notation is meant to remind us that after we have calculdtedaria-
tional derivatives, we must evaluate the expression in #ukdround geometry at
theunperturbed positions of the brane.

We now consider each term in (36). For simplicity, we tempbréocus on the
positive tension visible brane and drop the + superscripé flrst term represents
the variation OQXB with brane position, which is covariantly given by the Ligigde
ative in the normal direction:

0Qns
{e

‘D} ={—&£,Qns}o- (37)
0
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But the Lie derivative oQag vanishes identically in the background geometry, so
this term is equal to zero.

The second term in (36) represents the variatioQqf with respect to the normal
vector. Making note of the definition (3) of* in terms of®, as well a®d® = & and
MOa€ = 0, we arrive at

ona=0aE, ndna=0. (38)

Notice that since the normal itself must be continuous acthe brane, we have
[dna] = 0. After some algebra, we find that the variation of the jurtitonditions
with respect to the brane normal is non-zero and given by

0Qas
onc

5nc} — 2¢GeBOclpE. (39)
0

The third term in (36) is the variation with the bulk metrisetf dgag = hag.
Calculating this is straightforward, and the result is:

5QAB } 1
o = 5[Enhag] + 2khag. 40
{5ch deo . 5 [Enhag] AB (40)
The last variation we must consider is with respect to thaedraatter fields, which
is trivial: 50
'AB 2 1
{ 5T 5TCD}O = k5 (Tas—3T0ag) - (41)

So, we have the final result that
5Qxs = {20308 0cOpé + 2 [Enhag] £ 2khag + k3 (Tag — $Ta8) }j =0. (42)
If we take the trace 0dQj,g = 0, we obtain
q"BOAOgE* = KT (43)

These are the equations of motion for the brane bending egegfereedom in our
model, which are seen to be directly sourced by the matteisfimh each brane.

3.4 Converting the boundary conditions into distributionaburces

We can incorporate the boundary conditimi@,fB = 0 directly into thehag equation

of motion as delta-function sources. This is possible beedle jump in the nor-
mal derivative ofhag appears explicitly in the perturbed junction conditionkisT
procedure gives
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BpgPhep — fPhag = —2(GMa)’k | Z + Y B(y—Ve)Zis| . (44)
E=+
Here, we have defined
~2 2| p2 2K52 € 2
%= —(GMa)* | £1+ =2 5 AB(y—vye) 47|,
e=
2
Sap= (Tag— 3T qae) + FQSQBDCDDQ&- (45)
5

If we integrate the wave equation (44) over a small regiovetising either brane,
we recover the boundary conditions (42).
Together with the gauge conditions,

Mhag = " Oahcg = 0= ¢Bhag, (46)

(43) and (44) are the equations governing the perturbatiboar model.

4 Kaluza-Klein mode functions

The metric fluctuatiomag is governed by a system of partial differential equations
(PDESs). As is common in all areas of physics, the best waylt@such equations

is via a separation of variables. In this section, we sepdregy variables from the
conventional Schwarzschild variables Bp The part of the graviton wave function
corresponding to the extra dimension satisfies an ODE boyngdue problem,
which implies that there is a discrete spectrumtigs.

4.1 Separation of variables

As mentioned above, we have that
[Aps®®, £n]hcp = 0; 47)

i.e., Aps®P is independent of when evaluated in thé,r, 8, @,y) coordinates. This
suggests that we seek a solution iiag of the form

hag = Zhag, [1°Z = p?z, (48)

where, _
0 = £,hag and 0= gR0AZ; (49)
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that is,Z is an eigenfunction ofi® with eigenvalugu?. The existence of the delta
functions in thefi? operator means that we need to treat the even and odd parity
solutions of this eigenvalue problem separately.

4.2 Even parity eigenfunctions

If Z(—y) = Z(y), we see thaZ satisfies the following equations in the interyat
[0,d]:

MPZ(y) = —a?(y)(d) — 4k Z(y),
0= [(¢+2K)Z(y)]+, (50)
U =GMm.

There is a discrete spectrum of solutions to this eigenvyalablem that are labeled
by the positive integems=1,2 3.

Zn(y) = 0t Y2 (o) Jo (M) — 3y (my ) Yo(my e )], (51)
whereay, is a constant, angh, = pin/GM is thent" solution of
Y1 (Mn) 1 (Mafekd) = Iy (Mnf) Ya (mnleld). (52)

There is also a solution correspondingiig= Lip = 0, which is known as the zero-
mode:
Zo(y) = aoflefzk\y\’ ap = \/Z(l— e72kd)l/2' (53)

Hence, there exists a discrete set of solutions for bulkimpgrturbations of the

form h,(a?s) = Zn(y)ﬁgg(z"). Whenn > 0 these are called the Kaluza-Klein (KK)
modes of the modes, and the mass of any given mode is givere by, thigenvalue.
The ap constants are determined from demanding {lZat forms an orthonormal
set

d
Om = / dya 2(y)Zm(y)Zn(y). (54)
—d

These basis functions then satisfy:

[oe]

S(y—ys) = Zoafzzn(y)zn(yi)- (55)

n=

This identity is crucial to the model — inspection of (44)eals that the brane stress
energy tensors appearing on the righthand side are matliply one o (y —y. ).
Hence, brane matter only couples to the even parity eigeamoffi?.
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Case 1: light modes

It is useful to have simple approximate forms of the KaluzaiKmasses and nor-
malization constants for the formulae that appear lateThere are straightforward
to derive for modes that are ‘light’ compared to mass scalég¢he AdS length
parameter:

my < 1. (56)

Let us define a set of dimensionless numbgrisy:
Xy = Myled. (57)

Then for the light modes, we find thag is then™ zero of the first-order Bessel
function:
J1(%) =0. (58)

Also for light modes, the normalization constants reduce to
an ~ 20 Jo(x)| /%, N> 0. (59)

Actually, it is more helpful to know the value of the KK modenfttions at the
position of each brane. We can parameterize these as

Zo(y+) = vVke ™ Zz5, n>o0. (60)

For the light Kaluza-Klein modes, the dimensionlgssare given by

7~ { |Jo(;<27)1_1}. (61)

Case 2: heavy modes

At the other end of the spectrum, we have the heavy Kaluza:iiedes
myl > 1. (62)

Under this assumption, we fiAd

2 Strictly speaking, an asymptotic analysis leads to formulae mi#tplaced by another integet
on the righthand sides of Eqgns. (63). However, we note thatvien @arity modesn counts the
number of zeroes dfy(y) in the intervaly € (0,d), which allows us to deduce that=n.
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nm
T (63a)
keKYl gl —1
Zo(y) = \| ga— 1coslnnekd — 1] , (63b)
1 ekd/Z
SYS L s (630)
VieW)e

Unlike the analogous quantities for the light modes,shows an explicit depen-
dence on the dimensionless brane separatj@n

4.3 Odd parity eigenfunctions

As mentioned above, brane matter only couples to KaluzaKiedes with even
parity. But a complete perturbative description must idelthe odd parity modes
as well; for example, if we have matter in the bulk distriltligssymmetrically with
respect toy =0 (i.e. TA—B #+ TARB) modes of either parity will be excited. Hence, for
the sake of completeness, we list a few properties of the adityKaluza-Klein
modes here.

AssumingZ(—y) = —Z(y), we have:

MPZ(y) = —a(y) (37 — 4)Z(y),
0=2(y;) = Z(y_).

Again, we have a discrete spectrum of solutions, this tirbelkd by half integers:

(64)

The mass eigenvalues are now the solutions of
d d
Ya(My, 10)3(m,, 1 (69) = Jp(m, 1 0)Ya(my, 3 (). (66)
Proceeding as before, we define
Xyi3 =My, 1 (67)

For light modes witrmM%E < 1, Xa 11 is then" zero of the second-order Bessel

function:
Jz(Xn+%) =0. (68)

Taken together, (58) and (68) imply the following for thehlignodes:

My < Mgy <Mp<Mgjp <o (69)
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i.e., the first odd mode is heavier than the first even mode, etc

Finally, we note that since the odd modes vanish at the baakgr position of
the visible brane, it is impossible for us to observe theradaiy within the context
of linear theory. This can change at second order, sincestlsanding can allow us
to directly sample regions of the bulk wheZ%% =# 0. However, this phenomenon

is clearly beyond the scope of this paper.

5 Recovering 4-dimensional gravity

Let us now describe the limit in which we recover generaltidtg. We assume
there are no matter perturbations in the bulk and on the hididane; hence, we
may consistently neglect the odd parity Kaluza-Klein modssvirtue of the brane
bending equation of motion (43), we can consistentl\{éset 0. Furthermore, (55)
can be used to replace the delta function in fronfgf in equation (44). We obtain,

AppCPhep — [1Phag = —2(GM)?k3 45 Z)Zn(YJr)Zn(Y)- (70)
n—

We now note that foe k4 < 1,
Zo(yy) = Vk(1—e 22> 7,(y,), n>o0. (71)

That is, then > 0 terms in the sum are much smaller than tHeo@der contribution.
This motivates an approximation where the- O terms on the righthand side of
(70) are neglected, which is the so-called ‘zero-mode tition’.

When this approximation is enforced, we find thag must be proportional to
Zy(y); i.e., there is no contribution thag from any of the KK modes. Hence, we
have[i’hag = 0. The resulting expression has triedlependence, so we can freely
sety =y, to obtain the equation of motion fdng at theunperturbed position of
the visible brane: A

Apg“Phly = —2(GM)*KEZBZ5(y+) (72)

But we are not really interested Iirj, the physically relevant quantity is the pertur-
bation of the induced metric on the perturbed brane, whidefimed as the variation
of

Uag = [9ag —Nang) " (73)

We calculatedgy in the same way as we calculaté@x; above (except for the
fact thatgag shows no explicit dependence gg):

00aB
d9cp

30 = { OB 55 1 OU8 5

+
50 e 5gCD}O . (74)

These variations are straightforward, and we obtain:
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O0g = ag = g +2kE " dag — (Mals +nsla)E (75)

where all quantities on the right are evaluated in the bamku and at the unper-
turbed position of the brane. Note thagn” # 0, which reflects the fact thai is
no longer the normal to the brane after perturbation.

We now define the 4-tensors

hop = CAl e T = CAl Ay (76)
Here,ﬁgﬁ is the actual metric perturbation on the visible brane. Nloé this per-
turbation is neither transverse or tracefree:

O'hjy = 2k0qEF,  g*P H;B = 8ké. (77)

We can now re-express the equation of motion (72) in tern’@gﬁnstead othB
using (75). Dropping the- superscripts, we obtain

0YOyhgp + Do OghYy — 0¥Oghg, — 0YOghgy =

1 k
—223_K52 |:Taﬁ —3 (1+ 222) Tyygcr[}:| + (6k—4z-2-)DaDﬁE’ (78)
+

where we have defined
72 =Z3(y,) =k(1—e )71 (79)
In obtaining this expression, we have made use oftleguation of motion:
9% 0a0p& = 1Kk2g™PTyp. (80)

Note that we still have the freedom to make a gauge transtasman the brane
that involves an arbitrary 4-dimensional coordinate tfamsation generated hy,:

hag — Nap +Oang +Opna- (81)
We can use this gauge freedom to impose the condition
OphPa — 10ahPp = (222 — 3k) 04 E. (82)

Then, the equation of motion for 4-metric fluctuations reads

— — 1+wy
OYOyhggp +2RGV,35hy5 = —161G {Taﬁ - (3+2w:> TVygaB} , (83)

where we have identified

2
Ks

T 8m(1—e /1) 84)

W = g(eZd/f—l), G
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We see that (83) matches the equation governing gravitdtivaves in a Brans-
Dicke theory with parametew,,. Hence in the zero-mode truncation, the pertur-
bations of the black string braneworld are indistinguisedtom a 4-dimensional
scalar tensor theory.

Note that (83) must hold everywhere in our model, so we casiden the sit-
uation where our solar system is the perturbative braneemiaitated somewhere
in the extreme far-field region of the black string. The ferbetween the various
celestial bodies will be governed by (83) in tRgg,s ~ O limit. In this scenario,
solar system tests of general relativity place bounds omthas-Dicke parameter,
and hencel/¢:

W > 4x100 = d/>5. (85)

This lower bound on the dimensionless brane separatiorbeitin important factor
in the discussion below.

6 Beyond the zero-modetruncation

In this section, we specialize to the situation where themgerturbative matter lo-
cated on one of the branes and no other sources. Ugikeur interest here is to
predict deviations from general relativity, so we will nsteuthe zero-mode trunca-
tion. Just as in 4-dimensional black hole perturbationewe introduce the tensor
spherical harmonics to further decompose the equationsotbmfor a given KK
mode into polar and axial parts.

6.1 KK mode decomposition

To begin, we make the assumptions
sk — 0, and>;; = 0 or 35, = 0; (86)

i.e., we set the matter perturbation in the bulk and one obthees equal to zero.
Note that due to the linearity of the problem we can always @adolutions cor-
responding to different types of sources; hence, if we hakyaipal situation with
many different types of matter, it would be acceptable twesdbr the radiation
pattern induced by each source separately and then sunsthitsre

We decomposbpg as

kZ2(GM)? ©
hag = %eﬁ{eﬁ > Zn(y)zn(Yt)hE,n[);- (87)
n=0

Here, ¥ is a normalization constant (to be specified later) with disiens of
(mas$~4, and the expansion coeﬁicierthé”g are dimensionless. We define a di-
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mensionless brane stress-energy tensors and brane bendlags by

¢E

+ _ + T+ _

(88)
Omitting the+ superscripts, we find that the equation of motionﬁﬁg is
(GM)2|VO,h{f) + 2R/ hy | — ahy =
—2(Oup — 10gap) — 4(GM)?00pE, (89)
while the equation of motion fo:i:r is
0904& = tO. (90)
We also have the conditions
0%h( = 09O = 0=g"Phj). (91)

Note that in all of these equations, all 4-dimensional qitiastare to be calculated
with the Schwarzschild metrig, g. In particular,© = gO’B@aB.

6.2 The multipole decomposition

In addition to the decomposition bfg in terms of KK mode functions, the symme-
try of the background geometry dictates that we decompesprtsblem in terms of
spherical harmonics:

e

¢ = Yiméim, (92a)
2oy, Y

M _ e« <)y pnim

=5 5 S Milagh™™, (92b)
I=0m=—Ii=
S e 2y aim

0s=3 T 3 MVas0"™. (920)
I=0m=—li=

Here,[Yl(rL)]aB are the tensorial spherical harmonics in 4 dimensions, lwaie the
same quantities that appear in conventional black holeigstion theory. The ten-
sor harmonics depend only on the angular coordin@tes(6, ¢), while the expan-
sion coefficients depend drandr:

Em=&m(t,r), h"™=p" ¢y o™=l tr. (93)
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To define the tensor harmonics, first define the orthonornvalclers
a— Y29, r%=1Y29,, 0% =r"195, ¢*=(rsing)"1d,. (94)
The we define
Yap =9ap +tatg —Talg = 0O+ @@, tVap=r"Vag=0,  (95)

which is the projection tensor onto the 2-spheres of cohstandt, and the anti-
Symmetric tensog,g = —€gq

€= oW — P 6. (96)

Using these objects, tmﬁﬂj]aﬁ are defined in Table 4.

Table1 The spherical tensor harmonibﬁz]w

indexi Polar harmonlcﬁ?"rg Axial harmomcs&"'g
1 fﬁltgtBY“n 2f71/2t(a8p)yDyY|m
2 Z(arﬁ)Ylm 2f+1/2r(aeﬁ)yDVY|m
3 frargYim Voo €p)50°0"Yim

4 -2t uVB DyYIm

5 +2I’ (a¥B)y 0YYim

6 VaﬂYIm

7 VayVBBDyD Yim

Notice that we have divided the ten tensor harmonics into dvoups labeled
‘polar’ and ‘axial’. This division is based on how they trémsn under the parity,
or space-inversion, operatian— —r. In particular, under this type of operation,
polar objects acquire &-1)' factor, while axial quantities transform &s1)'+1.4

It is useful to re-write the spherical harmonic decompositof hg"g in terms of
explicitly polar and axial part8:

(o) 0

g =3 3 “Zlﬂ’""“ P +y 3 II;A"m )N (Lr). (97)

(n,polar)
ap

(n,axial)

polar contributiorh,, axial contributiorh, s

3 The definition of tensor harmonics is not unique; there are nanseother conventions in the
literature.

4 Alternatively, we can note that any tensor harmonic whose diefininvolves the pseudo-tensor
&4 is automatically an axial object.

5 A similar decomposition fo®,p also exists.
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In this expression and similar ones below, there is no suiomater the spherical
harmonic o1 index unless indicated explicitly.

It is easy to confirm that the parity operation commutes WithtasCP and g
operators in (44), or conversely commutes with the open%fciﬁ DA 0, + 2Ry VB5
in (89). Therefore, solutions of (89) that are eigenfuntiiof the parity operator
with different eigenvalues are decoupled from one anotiher; we can solve for
the dynamics ohg‘,’gpmar) and hgni;ax'a') individually. As is common for spherically
symmetric systems, modes with different value$ afidm are also decoupled.

Before moving on, we should mention that the decompositfaghebrane bend-
ing scalaré is given entirely in terms ofj,, i.e., it is an explicitly polar quantity.
It follows thatUy Ugé is also a polar quantity, which means that the brane bending
contribution in (89) only sources polar GW radiation.

7 Homogeneous axial perturbations

In this section, we present the equations of motion for thalaroments oﬂwf]";
in the absence of all matter sources. As mentioned abovdyréiree bending con-
tribution to (89) is a polar quantity. Therefore, the axidM@nodes are completely
decoupled from the brane bending scalar. Hence, the equaédry to solve in this
section is simply:

(GM)? [/ + 2Ra ™| — R <0, (99)

where the total axial contribution tu%”g is

hgnl.gamal) _ Zhén{l}m,axwl). (99)
m

In addition to this equation, remember that we also needtisfgdhe gauge condi-
tions (91).

Notice that (98) reduces to the graviton equation of motiooridinary GR for
my = 0, which corresponds to= 0. It turns out that the = 0 case must be handled
separately from tha > 0 case due to an enhanced gauge symmetry present in the
zero-mode sector. Therefore, for the purposes of this@eetie always assume
n>0.

7.1 High angular momentuni > 2 radiation

In Table 1, notice that the axial harmonics are identicadjyation to zero fof = 0.
Also note that fot = 1, the third harmonic vanishés’™ = 0. This means that there
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are no axial harmonics fdr= 0 and thal = 1 is a special case. In this subsection,
we concentrate on thie> 2 situation, where all of the axial tensor harmonics are
non-trivial.

The decomposition d11 nImaX|aI

explicitly reads

hgnllgm,amal) Ag[;"(ﬂ) !Q{l(ln)'|
When this is substituted into the equation of motion (98) asuabg conditions (91),
we get four PDEs that must be satisfied by the three expanseigfficients. These
four equations are not independent, however, as the tiniatiee of one of them is
a linear combination of the other three. Removing this dquait is possible to use
one of the other PDEs to algebraically elimina:t’ér:% from the other two equations.
Defining the ‘master variables’

(t.r) +AZD(Q) g (t,r) + AI(Q) ey (t.1). (100)

Unim(t,1) = F(D) (D), Vam(t,1) =1 Lagm(tr),  (101)
we eventually find that
(92 02 Unim Un|
= =5—=5 Vi [ M) 102
<0t2 (7I’§> (anm)+ i (anm) (102)
Here,Vy, is a potential matrix, given by

5t , " 2f’ £/2-1(1+1)]
Vo =f rz 2r (103)
n < TZ I+l ‘H'rﬁ

and the well-known tortoise coordinate is defined by

r.=r+2GMIn ( (104)

—-1).
2GM )
Hence, to describe homogeneous axial perturbations ofdlek btring braneworld,
one needs to specify initial data foym andvym, Solve the coupled wave equations
(102), and then use the definitions (109) to obtain the caigirpansion coefficients

xz%z(l?r)] andﬂis,(,':%. The last step it to integrate one of the original equatidnaation,

AL 0N f2f 4 f'r fl+1)—2
d;lm:fz d?Ier ( : )~%<|?%+ it 2r2> ]%ﬁrr‘g, (105)

to obtain the other expansion coeﬁicieﬂfl?]. This procedure can be repeated for
each individual value of, |, andm. However, it should be noted that since the po-
tential matrix does not explicitly depend om solutions that share the same values
of nandl only really differ from one another by the choice of initiaitd.

Why are we interested in solving homogeneous problems ligetie presented
in this section? Recall that in the case of 4-dimensionatiblzole perturbation
theory, the numeric solution of the homogeneous axial wanagon lead to the
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discovery of quasinormal modes. In other words, by exargirtire solutions of
equations such as (102), one can learn a lot about the caastictbehaviour of a
system when perturbed away from equilibrium, which is whatskall do in§7.3.
The solution of the homogeneous problem can also have soww dbservational
significance, since it can describe how the system settl@s @do its equilibrium
state after some event. That is, we expect the late time goawitational wave signal
from a black string to be described by the solutions of (10@ra black string is
formed or undergoes some traumatic event.

Before moving on, it is worthwhile to note the asymptotic &abur of the po-
tential matrix:

-1 -3
Mm V=0, lim Vi = (nﬁ;(rﬁ—(zr) )mﬁﬁ(rﬁ(r)—l))' (106)

Forr, — —oo, which corresponds to the black hole horizon, we seeuhatand
Vnim behave as free massless scalars. Conversely, far awayHeobieck hole they
behave as decoupled scalars of nragslt turns out that the asymptotic form oy
asr — oo is crucial in determining the characteristic GW signal frarblack string,
as we will see below.

7.2 Axial p-waves

For the sake of completeness, we can write down the equatfanstion governing
thel = 1, or p-wave, sector. In this case, general fluctuations are desthy

Wi = ALE™(Q) AT (1) + AZE(Q) AT, (@07)

In this case, when we substitute this into the equation ofionaf98), we find a
single master equation

0= (2 — 37 )Untm + Vot Unim, (108)
where
Unam(t,1) = F(1).5 D (t,17), (109)
and the potential is
5f+1 2f "
Vap=f|———+— . 11
e (rz r+2+m%> (110)

Once this equation is solved anq(ri)m is found, the remaining expansion coefficient
is determined by a quadrature:

0V fzd%(,"ﬁm f(2f +f'r)
= +
ot or r

ALy (111)
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Notice that this is identical to (105) with= 1.

One comment on thie= 1 perturbations is in order before we proceed. In ordi-
nary black hole perturbation theory, there are no truly tohependenp-wave per-
turbations of the Schwarzschild spacetime. This is becthesle= 1 perturbations
correspond to giving the black hole a small amount of angolamentum about
some axis in 3-space; i.e., they represent the linearizafithe Kerr solution about
the Schwarzschild background, and are hence time-indepéena the black string
case, however, the= 1 perturbation can be viewed as endowing a small spin to
the Schwarzschild 4-metrics on eafjphypersurface. However, the amount of spin
delivered to each hypersurface by each massive mode is ifotmanin fact it is
easily shown that it is proportional &, (y) evaluated at that hypersurface. In other
words, dipole perturbations give rise to a differentialiyating black string, where
the amount of rotation varies with It turns out that there is no time-independent
black string solution of this type, so we have dynamic pédtions. The exception
is the zero mod@& = 0, which gives rise to a uniform rotation of the black string;
i.e., these perturbations give rise to the linearizatio(18) about (15).

7.3 Numeric integration of quadrupole equations

In Figure 2, we present the results of some numerical soistad equation (102)
for the case of quadrupole radiatibr= 2. In this plot, we assume that we have
Gaussian initial data fafm on some initial time slice and thago, = O initially. It
turns out that the particular choice of initial data doesmath affect the outcome
of the simulations; that is, changing the shape or locatfdheinitial Gaussian, or
takingvnom # 0, results in very similar waveforms.

The key feature of the displayed waveforms is the natureefdte time signal.
We see that each of thre> 0 waveforms exhibits very long-lived late time oscilla-
tions® This behaviour is totally unlike the standard picture othlaole oscillations
in GR, where one expects the late time ringdown waveform tfeatureless power
law tail. This kind of signal is exhibited by thee= 0 zero-mode signal, which we al-
ready know corresponds exactly to the GR result. One of thet remarkable things
about the massive mode signal is that it is present for aé#syqf initial data, sug-
gesting that it is a fundamental property of the black steegpposed to just some
simulation fluke. In this sense the massive mode tail obsieneee is analogous to
the quasinormal modes of standard 4-dimensional theory.

An exercise in curve-fitting reveals that the late time masssignal is well mod-
eled by

tn2m b (=) sinmyt 112
{ Viom } ~ cons (GM) sin(myt + @). (112)
That is, the frequency of oscillation matches the mass ofrtbde. The decay rate
~ t~%% is much slower than the decay of the zero-mode signal, whittayk at

6 A mathematical rationalization of this is given§$0.2.2.
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Fig. 2 Results of the integra-
tion of the quadropole axial
equations of motion. The
waveforms are observed at
r. = 100GM while the initial
data was originally located at
r. = 50GM. We show results
for then=0,1,2,3 modes.
The massive mode signals
are characterized by a long-
lasting oscillating tail; i.e.
Unzm andvipom are proportional
to (t/GM)~>/8sin(mut + @) at
late times fom > O (here,pis
a phase angle). This is in con-
trast to the zero-mode result,
which shows no oscillations
and a power law decay at late
times. (The inset shows the
zero mode result on a log-log
scale.)
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least as fast as 4. We can confirm via simulations that these result holds fbeiot
values ofl. Hence, we are lead to the following important conclusion:

Irrespective of the initial amplitudes of the various KK nesd if one waits
long enough the GW signal from a perturbed black string wélidominated
by a superposition of slowly-decaying massive modes.

A challenge for gravitational wave astronomy is to obsehesé massive mode

signals directly. The actual prospects of doing this areutised ir;10.4.

8 Spherical perturbationswith sourceterms

We can re-write the decomposition (113) by explicitly pugjiout the spherical con-

tributions:
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. &0 ©
E=—"—=+ Yiméim, (113a)
VAT |ZLmZ—| i
<n,S)
hip = Z Y lagh™™ (113b)
I 1m——H
(S)
o, (
Oup = Z g0l (113c)
I 1m— li
Here, &) ”S) and O( represent the spherically-symmetric parts of the brane-

bending scalar metrrc perturbation, and brane stresgrgensor, respectively. In
this section, we are going to concentrate on the dynamidsi®bector when there
are non-trivial matter sources on one of the branes sougriagtational radiation.
The reason that we focus on the- 0, or swave, sector is computational conve-
nience; the equations of motion become rather involved ifgiidr multipoles.

Before starting to calculate things, we note that some msachay be a little
confused as to why we are even looking at spherically-symmgtavitational ra-
diation. In general relativity, it is a well-known conseque of Birkhoff’s theo-
rem that there is no spherically-symmetric radiation ato&chwarzschild black
hole. This is because the theorem states that the only @otutd the Einstein equa-
tions with cosmological constant with structuké x S are (d + 2)-dimensional
Schwarzschild-de Sitter or Schwarzschild anti-de Sitteckholes. Since these are
static solutions, any perturbation that respectssheymmetry of the background
must also be stati€But the black string background has struct(k8 x ) x S/Z.
Birkhoff's theorem does not apply in this case and we can eddeave time-
dependant solutions @Gag = 6k?gag With the same structure. Therefore, it is possi-
ble to have dynamical spherically-symmetric radiatioruaba black string, which
is what we study in this section.

8.1 Spherical master variables

We write thel = 0 contribution to the metric perturbation as

h(anés) = Hitatg —2Hot(orgy +Harala + Kyap, (114)

where the 4-vectors angg are defined in (94) and (95), respectively. Each of the
expansion coefficients is a function phndr; i.e., H; = Hi(t,r) andK = K(t,r).

Notice that the condition th B ) is tracefree implies

K =3(Hy—Hs). (115)

7 Static here means that one can find a gauge in which the peiarrimes not depend on time.



Gravitational waves from braneworld black holes: the blackgtraneworld 27

Before going further, it is useful to define dimensionlessrdmates:

r t P
- - = 2In( = —1). 11
Peam TTaw *=Pran(5-1) (116)
Then, when our decompositions (113) are substituted irg@tiuations of motion,
we find that all components of the metric perturbation areegod by master vari-

ables 5 ©
_2p 0K o0&
w_2+[.1§p3(pdr_fH2)’ p=p FIa (117)
Both ¢ = @(1,x) and¢ = ¢(1,X) satisfy simple wave equations:
(07 =R +Vy)p = Sy+ 9§, (118a)
(02— 02 +Vy) 9 = 7. (118b)

The potential and matter source term in thequation are:

f 6,9 4 .7 4 .6
3 |Mn P+ 6P —18un"p
p3(2+ p3n?)® [ (119a)

— 24,7 p* + 36,7 p° + 8] ,

Vy =

2fp3

I 2.3
0= 31 1257 |p(2+ H3p*)3r (271 + 313)

(119b)
+6(HEp 4 T/g).

Here, we have defined the following three scalars deriveh fitte dimensionless
stress-energy tens@é‘?;:

M=-000"F, Np=-00trP Ng=+05y P (120)
The potential and source terms in the brane-bending equati® somewhat less

involved: of ¢
=% S= Plon,. (121)

Finally, the interaction operator is

Ve

FEaTTon [6fp%0p + (H3p> —6p +8)]. (122)
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8.2 Inversion formulae

Assuming that we can solve the wave equations (118) for axgieerrce, we need
formulae that allow us to expresh, K in terms ofy and¢ in order to make gravi-
tational wave prediction. This can be derived by invertimg taster variable defin-
itions (117) with the aid (118). The general formulae areialty very complicated
and not particularly enlightening, so we do not reproduesrithere. Ultimately, to
make observational predictions it is sufficient to know tbenf of the metric per-
turbation far away from the black string and the matter sesirso we evaluate the
general inversion formulae in the limit gf — oo and with/A; = 0:

a2t (-2
oo o2
ar“si_(dz*p"'))““*un (52 pd”)‘p]’
dTK:::(pd’ﬁ 2>¢'+ n4p (d _:>¢} (123)

Note that these do not actually complete the inversion; istroases, a quadrature
is also required to arrive at the final form of the metric pdyation.

8.3 The Gregory-Laflamme instability

We now discuss one extremely important consequence of thatieq of motion
(118). Note that we can always add-on a solution of the homeges wave equa-
tion:

0= (02— 92 +Vy)y, (124)

to any particular solutiony, of (118a) generated by a given source. If we analyze
this homogenous equation in Fourier space by setfifig x) = €°T¥(x), we find
that 5

WY = 7%7‘2’ +VyW. (125)
This is identical to the time-independent Satinger equation from elementary
quantum mechanics witt? playing the role of the energy parameter. Now, sup-
pose that the potential supports a bound state solutionneiative energw? < 0.
That is, suppose we can find a solution of this ODE W#th— 0 asx — + with
w= —il", wherel" > 0. In such cases) 0 € ' and we have an exponentially grow-
ing solution to the equations of motion, which represeniseal instability of the
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system. Since such a tachyonic mafiés spatially bounded and arbitrary small in
the past, it is possible for any initial data with compactsupto excite it.

Clearly, the black string braneworld cannot be a viable lblaale model if we
can find such a tachyonic mode. It turns out that the poteNtia(119a) is not
actually capable of supporting a negative energy boune $tatall values ofu.
There are numerous ways of demonstrating this; includiegWtiKB method and
direct numeric solution of (125). One finds that no boundesgists if

Un > Ue ~ 0.4301 oru, =0. (126)

That is, the zero-mode of ttewave sector is stabfeand the high-mass modes are
also stable. This implies that the black string branewaslderturbatively stable if
the smallest KK mass satisfies

iy = GMmy > e ~ 0.4301 (127)

Under the approximation that the first mode is lighte{ *¢ < 1) and usingG =
¢p1/Mpy, this gives a restriction on the black string mass

M U Pe yd

— > TLed 128
Mp| ™ lp X1 (128)
or equivalently,
M l
> -9 v ) di
ML >8x 10 (0.1 mm)e . (129)

If we take/ = 0.1 mm, then we see that all solar mass black holes will inadityu
be stable black strings provided théit¢ < 19. The stability of the black string
braneworld is summarized in Figure 3.

Fig. 3 The stability of the
black string braneworld
model. If the black string 10
massM, or the brane sepa-
rationd is selected such that
GM/¢ andd// lies outside of
the ‘unstable configurations’
configurations portion of pa-
rameter space, the model is
stable. We have also indicated
thed/¢ > 5 limit imposed by 07
the low energy scalar-tensor : ‘ : ‘ ‘
limit of the model in the solar - 5 10 5 20 25
system (c.f§5). brane separation d//¢

allowed
configurations

scalar-tensor limit

mass log GM/{
[=)

27 unstable configurations

Before moving on, we have two final comments: First, we showlgk that all
black strings are unstable if the distance between the bila@eomes large — oo,

8 One can show that this is actually a gauge mode
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This essentially means that there is no stable black stohgisn when the extra
dimension is infinite. This is the well known Gregory-Laflamimstability of black
strings (7; 8). Second, if we denote the minimum mass stdatkistring to beMg
for a givend/¢, note that we do note claim that black holes with< Mg, do not
exist in this braneworld setup. Rather, such small mas&ilales are not described
by the black string bulk. They would instead be describeddgeslocalized black
hole solution that has yet to be obtained. It has been suegésthe literature that
the transition between the localized black hole and bladkgimay be a violent
first order phase transition, an hence be a significant safigravitational radiation
(12).

9 Point particle sourceson the brane

Up until this point, we have either been discussing homoggeguations or generic
sources. As an illustration of a more specific applicatiothef formulae we have
derived, we specialize to the situation where the pertgrbiane matter is a ‘point
particle’ located on one of the branes. Our goal is to exfigirite down the equa-
tions of motion for the GWs emitted by the particle. This is wation of a sig-
nificant astrophysical interest in 4-dimensions, becatuggethought to be a good
model of ‘extreme-mass-ratio-inspirals’ (EMRIs). Thisaisscenario when an ob-
ject of massMl, merges with a black hole of mass. WhenM, < M, it is a good
approximation to replace the small body with a point pagtidr delta-function,
source. Our interest here is to generalize this standaithérsional calculation to
the black string background.

One caution is in order before we proceed: It is not entiréarcthat the delta-
function approximation is a good one to make in the branehscknario. In 4 di-
mensions, there are only two length scales in the probleentwi Schwarzschild
radii 2GM and Z5M,,.°. Hence, an extreme scenario is well defined when one scale
is much larger than the other. However, in the braneworldace there is an addi-
tional length scalé. In typical situations{ < 2GM, < 2GM. It is unclear whether
or not it is valid to model the perturbing body as a point metin this case, since
a point particle always has a physical size less thatiowever, it the absence of a
better source model, we will pursue the point particle dpson here, while always
keeping this caveat in mind.

9.1 Point particle stress-energy tensor

We take the particle Lagrangian density to be

9 We generally consider cases where the physical size of the pieguparticle is close to its
horizon radius, as for neutron stars, etc.



Gravitational waves from braneworld black holes: the blackgtraneworld 31

+
L My [ 8@ -7)  dgdh
Zy = / — g g grdn (130)

In this expressiony is a parameter along the particle’s trajectory as definedhby t
JaB metric,zﬁ are the 4 functions describing the particle’s position om ltihane,
andM, is the particle’s mass parameter. Using (13, we find thes&asrgy tensor

+
M —2h) dz) dzy
+ p

Tog =M {/ =3 Oap%pr - dn dn —Pd . (131)

The contribution from the particle to the total action is

. dZ dA

+

/.,s,ﬂ %o g g O (132)

Varying this with respect to the trajectozg and demanding thap is an affine
parameter yields that the particle follows a geodesic athedrane:

d?z2 dz2
WSH q }zf ‘;f;’ 0, —1=q§3m;’zzr§, (133)
wherer, B";,[qi] are the Christoffel symbols defined with respect toqﬁ metric.

We note that the above formulae make explicit use of the iedicrane metrics
qﬁﬁ. However, all of our perturbative formalism is in terms oé t8chwarzschild
metric 9,5, especially the definition of thé; scalars (120). Hence, it is useful to
translate the above expressions using the following defirgt

dz?
n=acA, u'= d—/\p, —1=ggpuuf. (134)

Then, the stress-energy tensor and particle equation abmbécome

40 _
T = Z’E/wwuﬁ dA, uwOauf =0. (135)
Note that the only difference between the stress-energptsron the positive and
negative tension branes is an overall division by the warofa

By switching over to dimensionless coordinates, transfiognthe integration
variable totr from A, and making use of the spherical harmonic completeness rela
tionship, we obtain

Tﬂ:

ot 1 2 o

Here, we have defined
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(GM)°
€ g BT Gapt’El &G =a (137)

As usual,E is the particle’s energy per unit rest mass defined with mestoethe
timelike Killing vectorfg).

9.2 Thes-wave sector

Comparing (88) and (113c) with (136), we see that

f
eés/; = WUQUB O[p — pp(T)], (138a)
f
N =———=90p— 138b
Epp
N = o[p— 138
f2
N3 (138d)

= \/TT;)“'é[p_pp(T)]’

wherep, = dp,/dT. Here, we have identified as the total angular momentum of
the particle (per unit rest mass), defined by

L? L

rszwu“uﬁ, L= (139)
Note that for particles traveling on geodesiEsandL are constants of the motion.
These are commonly re-parameterized in terms of the edcignte and the semi-
latus rectunp, both of which are non-negative dimensionless numbers:

£2 (p—2—2e)(p—2+2e)

T p(p-3-&)
2

; (140)
2=—".
p—3—¢?

The orbit can then be conveniently described by the alteneddial coordinatey,

which is defined by 0

. 141
1+ecosy (141)

p:

Taking the plane of motion to b8 = 11/2, we obtain two first order differential
equations governing the trajectory



Gravitational waves from braneworld black holes: the blackgtraneworld 33

1/2
dx | (p—2—2ecosy)?(p—6—2ecosy) /
dt | pi(p—2-2e)(p—2+2¢) :

2 (142)

do p(p—2— 2ecosy)?
dr | pg(p—2—2e)(p—2+2e)

These are well-behaved thorough turning points of thedtajgdp,/dt = 0. When
e < 1 we have bound orbits such that(1+e) < pp < p/(1—e), while fore> 1 we
have unbound ‘fly-by’ orbits whose closest approachgjs= p/(1+€). To obtain
orbits that cross the future event horizon of the black girone needs to apply a
Wick rotation to the eccentricitg — ie and make the replacemexit— ix + 17/2.
Then a radially infalling particle correspondsée- .

It is worthwhile to write out the associated source termshie Wave equation
explicitly as a function of orbital parameters

ot
Y 3VanE 2+ p2p?)
6pE2 ”2p374
T (HZP3+2 d[p—pp(1)]|,
2p
R/ i
* T 6VanEp

l (20%+3L%)8'[p — pp(1)]

80— pp(1)]. (143)

Note that

‘pp‘ < fa
Ex>1= 7> 5%.

That is, the particle’s speed is always less than unity, theces wave equation
vanish if the particle is stationary or in a circular orbitdshigh-energy trajectories
imply that the system’s dynamics are not too sensitive tadtaending modeg >
¢.
Numeric solutions of the spherical equations of motion vétipoint particle
source have been obtained elsewhere (4). A major consigieiatperforming such
simulations is that the sources in the save equations amébditonal, and hence
must be regulated in some way. In (4), the authors regulaedeélta-functions by
replacing them with thin Gaussians. In Figure 4, we showélalts of such a simu-
lation when the perturbing particle is undergoing a pedantbit. One observes that
the GW signal for from the brane is essentially that of a puassive mode signal.
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massive mode
visible

x=80

2x107

l

x=150

4 3

observer
location

Fig. 4 The steady-state KK gravitational wave signal induced by aghamindergoing a periodic
orbit around the black string witpp = 0.5. The orbit pottom left) has eccentricite = 0.5 and
angular momentunp = 3.62. The waveform of radiation falling into the black stringgsite
different than that of radiation escaping to infinity: Theailihg signal precisely mimics the orbital
profile of the source, while the outgoing signal is dominated by@cbromatic radiation whose
frequency is proportional to the KK mags

10 Estimating the amplitude of the massive mode signal

We have seen in previous sections that if we consider a blaitig gelaxing to
its equilibrium configuration or if we look at the GWs emitteg & small particle
orbiting the black string, the signal is dominated by masside oscillations. The
question is: are these oscillations observable? The abilia GW detector to see
a given signal depends on that signal’s frequency and itdiade. The frequency
of massive mode signals is well-defined, it is simply giventlby solution of the
eigenvalue problem presentedsidh However, the amplitude is difficult to pin down
unless we consider a specific situation. So in this sectiec@ncentrate on the
s-wave massive modes emitted by a particle in orbit aboutekisring. We will be
interested in the entire massive mode spectrum; i.e., klegaofn. To estimate the
GW amplitude associated with heavy modes we will need tojarahe asymptotics
of the Green’s function solution of the coupled wave equmesti(118).

10.1 Green’s function analysis

The formal solution to the coupled wave equations (118) @awiitten in terms of
the Green’s functions

(02— 02 +Vy)G(T;%,X) = 8(1)d(x—X), (145a)
(02— 02 +Vy)D(1;x,X) = 3(1)3(x—X). (145b)
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To preserve casuality in the model, we demand @andD satisfy retarded bound-
ary conditions. That is, they are identically zero if thedigbint (7, x) is not con-
tained within the future light cone the source pqiitx).

In terms of these Green'’s functions, we have

(.,U(T,X) = l.Ul(TaX) + LpUZ(TaX)a
Y1 (1,X) = /dr’dx’ G(1—1;x,X) (T ,X),

Pa(T,X) = /dT’dX’G(T—T/;X,X’)j(T/,X’)d)(T/,X’),
¢(1,x) = /dr’dx’ D(t—1/;%,X)7 (1", X). (146)

Note the decomposition af into a contributiony, from the matter source”y, and

a contributiony, from from brane bending. These expressions suggest that if we
knew the two Green’s functions explicitly, the gravitatdmave master variable
and brane-bending scalar would be given by quadrature.

Unfortunately,G andD are not known in closed form, so we have to resort to
numeric computations to accurately calculate the valugg ahd ¢ induced by a
particular source, and for a particular choiceuofHowever, any given source will
excite all the KK modes to some degree, so to rigourously ttbéespherical grav-
itational radiation we would need to do an infinite number wineric simulations,
one for each discrete value gf This is not practical, so our goal here is to use the
asymptotic behaviour of the propagators to determine #restrendental properties
of the emitted radiation and how these scale with the dinoehsss Kaluza-Klein
mass.

10.2 Asymptotic behaviour

In this subsection, we outline the behaviour of the two ddrGreen’s functions
G andD under the assumption that the the field point is deep withérfuture light
cone of the source point, and is also far away from the stfiings is the relevant
limit to take if we are interested in the ‘late time’ gravitatal wave signal seen by
distant observers.

10.2.1 Brane bending propagator

First, consider the brane bending Green’s function. Nadéttie brane bending po-
tentialVy is identical to that for thé = 0 component of a spin-0 field propagating in
the Schwarzschild spacetime. This is because the branéngezgluation of motion
(43) is essentially that of a massless Klein-Gordon fieldtufately, this propagator
has been well studied in the literature, and one can show that
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D(T;xX)~T73, T3>X—x>0. (147)

This result is most easily interpreted if one considers tiitgal value problem for
¢. Thatis, we switch off the source in (43) and prepare the fiefme initial state
on a given hypersurface. Then, a distant observer measgratdate times would
see the field amplitude decay in time as a power-law with egpbn3.

10.2.2 Gravitational wave propagator

The retarded Green'’s function for potentials similavjohave also been considered
in the literature. It turns out that the asymptotic chamactiethe potential is the
crucial issue. Koyama & Tomimatsu (13) have demonstratetftr potentials of
the form

1
Vo Lo (7). (149)

the Green’s function has the asymptotic form
G(T1;%,X) ~ ptin 21758 sinpn T+ @(1)], T3>X —x> 0. (149)

The form of this Green’s function rationalizes the waveferseen in Figure 2, es-
pecially thet—%/6 envelope of the late time signal, despite the fact that tiveiging
equations (102) were matrix-valued. The key point is thergatgtic form of the po-
tential matrix (106), which says that far from the string tiwe degrees of freedom
are decoupled and governed by a potential of the form (148).

Comparing this expression to the asymptotic formDoibove, we see thas
decays much slower. This suggests thats> (), at late times in equation (146); i.e.,
the portion of the GW signal sourced directly by the strassrgy tensor dominates
the brane-bending contribution. Also note the overa‘lil/2 scaling of the Green'’s
function with the KK mass of the mode. We will use this below.

10.3 Application to the point particle case for>> 1. Kaluza-Klein
scaling formulae

Let us now use the asymptotic Green’s functions in the casremine perturbing
matter is a point particle. Our goal is to estimate how the kdfal scales witm
for the high mass KK modes.

When the matter stress energy tensor has delta-functiorogtuipipe [dr’dx’
integrals in (146) reduce to line integrals over the portbthe particle’s worldline
inside of the past light cone. Now, working in the late-tirae field limit, we know
that the brane-bending contribution to the signal is mihitdée also focus on the
highn modes; i.e.,

pn > 1. (150)
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Concentrating on the direct signal produced by the partieeesee that the source
term .7 for a point particle (9.2) seems to scalegs’. However, note that the
source also involves the derivative of a delta function,cliimeans we must perform
an integration by parts. This brings a derivative@®fvith respect to time into the

mix. Again assuming that, > 1, we se@;G ~ u,}/ze”‘nf. The net result is that we
expect

WO > 1 (151)

That is, all other things being equal, the spherical masteiable for a given KK

mode scales a{s{3/2.
But this is not the entire solution to the problem, since wadltactually observe

U, we observéhpg. So we need to use the inversion formulae (123) to omghﬁ

and then (87) to get the spherical parthpg. The detailed analysis leads to the
following late-time/distant-observer approximation fliee KK metric perturbations:

his? & hnZ (t) sin(ant + @) diag(0, +1, — 3r?, —1r2sir? 6,0) , (152)

where.Z (t) is a slowly-varying function of time that depends on the idetaf the
initial data. The characteristic amplitudegare given by

hy = /8717 (ZGrMp> <2G£'V') e Fa(d/0). (153)

Here,r is the distance between the observer and the stringgaish dimensionless
guantity that depends on the orbit of the perturbing particit not om or any other

parameters; its value must be determined from simulatkéyid,/?¢) is a complicated

expression involving Bessel functions with the followimgiting behaviour: When

the perturbing matter is on our brane

Le-3/2(nd)Y2, n< 26V /1
Fa(d/f)~< 2" ’ S 154a
n(d/6) {ed/z‘(nn)l/z, n> 2e¥/! /1. (1542)
On the other hand, for particles on the shadow brane:

Fa(d/0) ~ {?;;”52{2)1/27 Ei iix ; z (154b)
Finally, to a good approximation, the KK frequencies aregiby

@ =2t~ £ (n+3) e 9. (155)
We note that even though these formulae were derived in thiexoof the largen

approximation, they are actually reasonable approximatto the smalh case as
well.
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[M =10Mg, M, =1.4My, r = 1kpc, £ = 0.1 mm|]
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Fig. 5 Characteristic amplitudes of KK radiation emitted by pointtjoées on the visible brane or
the shadow brane as follows from equation (153). The paatiquirameters for this example are
indicated just above the plot. Also shown is a dimensionally reduersion of the characteristic
strain sensitivity of advanced LIGO for comparison.

10.4 Observability of the massive mode signal

We now have an expression (152) for the amplitude of the ggienassive modes
in terms of a parameter’ that can be determined from simulations withsmall.
This amplitude varies with the type of orbit generating th&/ it can bec’(107°)
or smaller for periodic orbits, or as high &1) for ‘zoom-whirl’ orbits 1°

In Figure 5, we plot the characteristic amplitudgsas a function of their fre-
quency for a scenario where a4M, object is orbiting a 18, black string at a
distance of 1kpc away. Several general trends are obvious:

e the amplitude of the GW signal decreases with increasingebsaparatiod/¢;

¢ the lowest frequency in the spectrum also decreases witedsing brane sepa-
rationd//;

e forasource on the visible brane, the spectrum is peaked alwitical frequency
given by

-1
) ; (156)

e when the perturbing particle is on the shadow brane, thetgpeads flat under-
neath the critical frequencii;; and,

1
forie = T 304GHZ(O.lmm

10 These are orbits where the particle comes in from infinity, iisflyrcaptured by the black string,
and then escapes to infinity again.
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e in all cases, the signal from shadow patrticles is stronggn that of visible par-
ticles.

In general, the peak amplitude,ax is the one corresponding to the critical fre-
quency, and is given by

M -1 -1/2 1/2
o < e/ () () (M -
Mg kpc Mg 0.1mm

{5.0 x 10722g-(d=50/t " yjsible source

(157)

9.1 x 10 2t~ (d=50)/2! " shadow source

Figure 5 illustrates the main problem with observing the Kdthal from a black
string. The frequencies in the KK spectrum are bounded bbiow

-1
—(d-5¢)/¢
5 1mm) e : (158)

This implies that the KK spectrum is usually in a higher waaththat the operation
frequencies of LIGO and LISA, assuming thaf 50um in line with current ex-
perimental tests. The way to mitigate this is to push the dsdarther apart, which
reducesfnin. But if one does this, the amplitude of the signal goes dowpoex
nentially. Clearly, the situation is much better for shaduarticles, which have an
intrinsically stronger GW signal. The detailed prospedstserving massive mode
signal with realistic GW detectors is discussed in (4).

11 Summary and outlook

In these lecture notes, we have introduced the black striageworld, which is a
candidate model for a brane black hole in the Randall-Sundscenario. At the
background level, this model is indistinguishable from 8ahwarzschild solution
to brane observers, so we need to examine the perturbatidhe enodel to find
deviations from general relativity. We have developed threnflism necessary to
calculate the gravitational wave signals emitted from klsitings perturbed away
from their equilibrium configurations. We have found thag tate time nature of
these signals is somewhat independent of the nature of theansm which gen-
erated them, and is a long-lived superposition of discretegohromatic massive
modes. We have discussed how these massive modes couldduegidy a point
particle orbiting a black string, and estimated what theipitude might be.

There are a number of open issues that need to be addreshedhmotlel. So far,
we have only been able to estimate amplitudes by analyzengdaling behaviour of
Green’s functions and using point particle sources. We t@ednfirm our scaling
results with direct simulations and we need to move beyordtiint particle ap-
proximation to model realistic sources with size largenthalhe phenomenon of
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localized black hole-black string transitions must be ekt in quantitative detail.
The possibility that such a phase transition can producefgignt amounts of mas-
sive mode radiation and contribute to the gravitationalevasckground provides
one of the best prospects for the actual detection of a blaickgs
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