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Abstract In these lecture notes, we present the black string model of abraneworld
black hole and analyze its perturbations. We develop the perturbation formalism for
Randall-Sundrum model from first principals and discuss theweak field limit of
the model in the solar system. We derive explicit equations of motion for the axial
and spherical gravitational waves in the black string background. These are solved
numerically in various scenarios, and the characteristic late-time signal from a black
string is obtained. We find that if one waits long enough aftersome transient event,
the signal from the string will be a superposition of nearly monochromatic waves
with frequencies corresponding to the masses of the Kaluza Klein modes of the
model. We estimate the amplitude of the spherical componentof these modes when
they are excited by a point particle orbiting the string.

1 Introduction

Braneworld models hypothesize that our observable universe is a hypersurface,
called the ‘brane’, embedded in some higher-dimensional spacetime. Standard
model particles and fields are assumed to be confined to the brane, while gravita-
tional degrees of freedom are free to propagate in the full higher-dimensional ‘bulk’.
The phenomenological implications of these models have been intensively studied
by many different authors over the past decade, with great emphasis being placed
on any observational consequences of the existence of large, possibly infinite, extra
dimensions.

There are a number of different braneworld models, but perhaps one of the best
studied is the Randall-Sundrum (RS) scenario (15; 16). There are two variants of
the model involving either one or two branes, but the common assumption in both
setups is that there is a negative cosmological constant in the bulk characterized by
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a curvature scaleℓ. The great virtue of the model is that the gravity behaves like
ordinary general relativity (GR) in ‘weak field’ situations; i.e., when the density of
matter is small or scale of interest is large. In particular,one recovers the Newtonian
inverse-square law of gravitation in the RS model as long as the separation between
the two bodies≫ ℓ. This leads to a direct laboratory constraint on the bulk curvature
scale, since Newton’s law is known to be valid on scales larger than around 50µm
(10).

The RS model is also consistent with various astrophysical tests of GR in the
weak field regime, including the solar system tests such as the perihelion shift of
Mercury or time delay experiments using the Cassini spacecraft. On the cosmolog-
ical side, one can also demonstrate that the RS predictions for the dynamics of the
scale factor or the growth of fluctuations match the predictions of GR as long as
the Hubble horizonH−1 is less that the AdS length scaleℓ. Hence, the RS model
matches conventional theory in the low-energy universe.

The ability of the RS model to mimic GR in these cases is both fortuitous and
somewhat surprising. The introduction of a large extra dimension is not a trivial
modification of standard theory, and before the work of Randall & Sundrum the
conventional wisdom was that such models could not be made tobe consistent with
the real measured behaviour of gravity. The fact that a fifth dimension can be made
to conform to what we observe is part of the reason for the flurry of activity on the
RS model since its inception. It also raises an interesting problem: The correspon-
dence between GR and the RS scenario must fail at some point, since at the end
of the day they have very different geometric setups. In whatsituations does this
breakdown occur, and are there any associated observational signatures that we can
use to constrain the RS model?

We mentioned above that RS cosmology matches GR cosmology for Hℓ . 1.
Thus, we are led to look for deviations from standard theory in cosmological epochs
with Hℓ & 1. This corresponds to the very high-energy radiation epoch, which is
just after inflation and before nucleosynthesis. People have looked at modifications
to the background expansion, dynamics of gravitational waves (9; 11; 17), and the
growth of density perturbations in the high-energy epoch (1). All of these phenom-
ena show some departures from GR, but as of yet there has been no clean observa-
tional test proposed that could either rule out or rule in theRS model.

Hence, we need to look to other ‘strong field’ scenarios to test the model. One
possibility is to look at black holes in the Randall-Sundrummodel. We know that
these objects are not describable in the Newtonian limit of GR, so one might ex-
pect that braneworld black holes to exhibit observable deviations from the ordi-
nary Schwarzschild or Kerr solutions. However, there is a major problem with using
black holes a probe of braneworld models: There is no known ‘reasonable’ brane-
localized black hole solution in the RS one brane scenario. The lack of a solution is
not for lack of trying, many authors have attempted various techniques to find one.
One of the first attempts was using the 5-dimensional black string solution as a bulk
manifold (2). However, it was demonstrated that such solutions were subject to the
famous Gregory-Laflamme instability (8), which is a tachyonic mode with a long
wavelength in the extra dimension. Others have tried to find brane black holes nu-



Gravitational waves from braneworld black holes: the black string braneworld 3

merically (14), but success has been limited to small mass objectsGM ≪ ℓ. Several
have conjectured that the lack of a solution in the one brane case has to do with the
AdS/CFT correspondence (5; 19).

However, the situation is somewhat better in the two brane case. It turns out that
it is possible to find a stable braneworld model in this case, and that the brane geom-
etry is exactly 4-dimensional Schwarzschild (3; 4; 18). Like the model considered
in (2), this is based on the 5-dimensional black string. The Gregory-Laflamme in-
stability is evaded by the infrared cutoff introduced by thesecond brane; i.e., the
model is stable if the branes are close enough together. Because the geometry on the
brane is identical to that of the Schwarzschild metric, the model is automatically in
agreement with any test of GR sensitive to the background geometry only; such as
light-bending, perihelion shifts, time delays, etc.

Hence, we need to look at the perturbative aspects of the model to obtain differ-
ences with ordinary GR. In particular, we are interested in the gravitational waves
(GWs) emitted from these black strings when they are displaced from their equilib-
rium configuration. Of primary importance is the issue of whether or not any devia-
tions from the predictions of GR are observable by GW detectors such as LIGO or
LISA. These issues are the subject of these lecture notes.

In §2 we introduce the RS model and the black string braneworld. In §3, we de-
scribe how to perturb the model and derive the relevant equations of motion. In§4,
we show how to separate variables in the governing partial differential equations
(PDEs) by introducing the Kaluza-Klein (KK) decomposition. In §5, we consider
the limit under which we recover GR. In§6, we define the complete mode decom-
position in terms of KK modes and spherical harmonics used inthe rest of the notes.
In §7, we consider homogeneous solutions to the axial equationsof motion and de-
termine (via simulations) the characteristic GW signal produced by the string. In§8,
we consider the spherical sector of the GW spectrum excited by generic sources and
discuss the Gregory-Laflamme instability in detail. In§9, we write down explicit
equations of motion for the spherical GWs emitted by a point particle orbiting the
black string and consider their numeric solution. In§10, we estimate the amplitude
of Kaluza-Klein radiation emitted from the black string fora given point particle
source. Finally, in§11 we give a brief summary and outline some open questions.

2 A generalized Randall-Sundrum two brane model

In this section, we present a generalized version of the Randall-Sundrum two brane
model in a coordinate invariant formalism. We begin by outlining the geometry of
the model, the action governing the dynamics, and the ensuing field equations. We
then specialize to the black string braneworld model, whichwill be perturbed in the
next section.
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2.1 Geometrical framework and notation

Consider a (4+1)-dimensional manifold(M ,g), which we refer to as the ‘bulk’. One
of the spatial dimensions ofM is assumed to be compact; i.e., the 5-dimensional
topology isR

4× S. We place coordinatesxA on M so that the 5-dimensional line
element reads:

ds2
5 = gABdxAdxB. (1)

We assume that there is a scalar functionΦ that uniquely maps points inM into the
intervalI = (−d,+d]. Here,d is a constant parameter that is one of the fundamental
length scales of the problem. The gradient of this mapping∂AΦ is spacelike,

∂AΦ ∂ AΦ > 0, (2)

and is tangent to the compact dimension ofM . This scalar function defines a family
of timelike hypersurfacesΦ(xA) = Y , which we denote byΣY . The two submani-
folds at the endpoints ofI, Σd andΣ−d , are periodically identified.

Let us now place 4-dimensional coordinateszα on each of theΣY hypersurfaces.
These coordinates will be related to their 5-dimensional counterparts by parametric
equations of the form:xA = xA(zα). We then define the following basis vectors

eA
α =

∂xA

∂ zα , nA =
∂ AΦ

√

∂BΦ ∂ BΦ
, nAeA

α = 0, nAnA = +1. (3)

The tetradeA
α is everywhere tangent toΣY , while nA is everywhere normal toΣY .

The projection tensor onto theΣY hypersurfaces is given by

qAB = gAB −nAnB, nAqAB = 0. (4)

From this, it follows that the intrinsic line element on eachof theΣY hypersurfaces
is

ds2
4 = qαβ dzα dzβ , qαβ = eA

α eB
β qAB = eA

α eB
β gAB. (5)

The objectqαβ behaves as a tensor under 4-dimensional coordinate transformations
zα → z̃α(zβ ) and is the induced metric on theΣY hypersurfaces. It has an inverse
qαβ that can be used to defineeα

A :

eα
A = gABqαβ eB

β , δ α
β = qαγ qγβ = eα

A eA
β . (6)

Generally speaking, we define the projection of any 5-tensorTAB onto theΣY

hypersurfaces as
Tαβ = eA

α eB
β TAB, (7)

where the generalization to tensors of other ranks is obvious. The 4-dimensional
intrinsic covariant derivative ofTαβ is related to the 5-dimensional covariant deriv-
ative ofTAB by

[∇α Tµν ]q = eA
α eM

µ eN
ν ∇AqB

MqC
NTBC, (8)
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where the notation[· · · ]q means that the quantity inside the square brackets is calcu-
lated with theqαβ metric.

Finally, the extrinsic curvature of eachΣY hypersurface is:

KAB = qC
A∇CnB = 1

2£nqAB = KBA, nAKAB = 0,

Kαβ = eA
α eB

β KAB = eA
α eB

β ∇AnB. (9)

2.2 The action and field equations

We label the hypersurfaces atY = y+ = 0 andY = y− = +d as the ‘visible brane’
Σ+ and ‘shadow brane’Σ−, respectively. Our observable universe is supposed to
reside on the visible brane. These hypersurfaces divide thebulk into two halves: the
lefthand portionML which hasy ∈ (−d,0), and the righthand portion which has
y ∈ (0,+d). The action for our model is:

S =
1

2κ2
5

∫

ML

[
(5)R−2Λ5

]

+
1

2κ2
5

∫

MR

[
(5)R−2Λ5

]

+ ∑
ε=±

1
2

∫

Σ ε

(

L
ε −2λ ε − 1

κ2
5

[K]ε
)

+
1
2

∫

ML

LL +
1
2

∫

MR

LR. (10)

In this expression,κ2
5 is the 5-dimensional gravity matter coupling,Λ5 = −6k2 is

the bulk cosmological constant,λ± =±6k/κ2
5 are the brane tensions, andℓ = 1/k is

the curvature length scale of the bulk. Also,L ± is the Lagrangian density of matter
residing onΣ±, while LL andLR are the Lagrangian densities of matter living in
the bulk. Note that the visible brane in our model has positive tension while the
shadow brane has negative tension.

The quantity[K]± is the jump in the trace of the extrinsic curvature of theΣY

hypersurfaces across each brane. To clarify, suppose that∂M
±
L and∂M

±
R are the

boundaries ofML andMR coinciding withΣ±, respectively. Then,

[K]+ = qαβ Kαβ

∣
∣
∣
∂M

+
R

−qαβ Kαβ

∣
∣
∣
∂M

+
L

, (11a)

[K]− = qαβ Kαβ

∣
∣
∣
∂M

−
L

−qαβ Kαβ

∣
∣
∣
∂M

−
R

. (11b)

We can now write down the field equations for our model. Setting the variation
of S with respect to the bulk metricgAB equal to zero yields that:

GAB −6k2gAB = κ2
5

[
θ(+y)T R

AB +θ(−y)T L
AB

]
,

T L,R
AB = − 2√−g

δ (
√−gLL,R)

δgAB . (12)



6 Sanjeev S. Seahra

Meanwhile, variation ofS with respect to the induced metric on each boundary
yields

Q±
AB =

{
[KAB]±2kqAB +κ2

5(TAB − 1
3T qAB)

}±
= 0, (13a)

T±
AB = eα

A eβ
B

{

− 2√−q
δ (

√−qL )

δqαβ

}±
. (13b)

Here, the{· · ·}± notation means that everything inside the curly brackets iseval-
uated atΣ±. We see that (12) are the bulk field equations to be satisfied bythe
5-dimensional metricgAB, while (13) are the boundary conditions that must be en-
forced at the position of each brane. Of course, (13) are simply the Israel junction
conditions for thin shells in general relativity.

In what sense is our model a generalization of the RS setup? The original
Randall-Sundrum model exhibited aZ2 symmetry, which implied thatML is the
mirror image ofMR. Also, in the RS model the bulk was explicitly empty. However,
since we allow for an asymmetric distribution of matter in the bulk, we explicitly
violate theZ2 symmetry and bulk vacuum assumption.

2.3 The black string braneworld

We now introduce the black string braneworld, which is aZ2 symmetric solution of
(12) and (13) with no matter sources:

LL
.
= LR

.
= L

± .
= 0. (14)

Here, we use
.
= to indicate equalities that only hold in the black string background.

The bulk geometry for this solution is given by:

ds2
5

.
= a2(y)

[

− f (r)dt2 +
1

f (r)
dr2 + r2 dΩ 2

]

+dy2, (15a)

f (r) = 1−2GM/r, a(y) = e−k|y|. (15b)

Here,M is the mass parameter of the black string andG = ℓPl/MPl is the ordinary
4-dimensional Newton’s constant. The functionΦ used to locate the branes is trivial
in this background:

Φ(xA)
.
= y, (16)

which means that theΣ± branes are located aty = 0 andy = d, respectively. The
ΣY

.
= Σy hypersurfaces have the geometry of Schwarzschild black holes, and there

is 5-dimensional line-like curvature singularity atr = 0:

RABCDRABCD
.
=

48G2M2e4k|y|

r6 +40k2. (17)
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Fig. 1 A schematic illustration of the black string braneworld

Note that the other singularities aty = ±∞ are excised from our model by the re-
strictiony

.
= Y ∈ (−d,d], so we will not consider them further. An illustration of the

black string braneworld background is given in Figure 1.
We remark that it is actually possible to replace the 4-metric in square brackets

in (15) by any 4-dimensional solution ofRαβ = 0 and still satisfy the 5-dimensional
field equation. That is, we could have

ds2
5

.
= a(y)2ds2

Kerr +dy2, (18)

whereds2
Kerr is the line element corresponding to the Kerr solution for a rotating

black hole. Such a solution is known as the rotating black string. The dynamics of
perturbations of the rotating black string are still an openquestion due to the extreme
complexity of the governing equations of motion.

Finally, note that the normal and extrinsic curvature associated with theΣY hy-
persurfaces satisfy the following convenient properties:

nA
.
= ∂Ay, nA∇AnB .

= 0, KAB
.
= −kqAB. (19)

These expressions are used liberally below to simplify formulae evaluated in the
black string background.

3 Linear perturbations

We now turn our attention to perturbations of the black stingbraneworld. We first
describe the perturbative variable we use to describe the fluctuations of the system,
then we linearize the bulk field equations and junction conditions. We finish this
section by rewriting the perturbative equations of motion in a particularly useful
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form. Note that while we work from first principals in§3–§5, similar calculations
and results have appeared many times in the literature; see the seminal works by
Randall & Sundrum (15) and Garriga & Tanaka (6), for example.

3.1 Perturbative variables

We are ultimately interested in the behaviour of gravitational waves in this model,
which are described by fluctuations of the bulk metric:

gAB → gAB +hAB, (20)

wherehAB is understood to be a ‘small’ quantity. The projection ofhAB onto the
visible brane is the observable that can potentially be measured in gravitational wave
detectors. But it is not sufficient to consider fluctuations in the bulk metric alone —
to get a complete picture, we must also allow for the perturbation of the matter
content of the model as well as the positions of the branes.

Obviously, matter perturbations are simply described by the T L
AB, T R

AB, andT±
AB

stress-energy tensors, which are considered to be small quantities of the same order
as hAB. On the other hand, we describe fluctuations in the brane positions via a
perturbation of the scalar functionΦ :

Φ(xA) → y+ξ (xA). (21)

Here,ξ is a small spacetime scalar. Recall that the position of eachbrane is implic-
itly defined byΦ(xA) = y±. Hence, the brane locations after perturbation are given
by the solution of the following fory:

y+ξ
∣
∣
∣
y=y±

+(y− y±)∂yξ
∣
∣
∣
y=y±

+ · · · = y±. (22)

However, note thaty− y± is of the same order asξ , so at the linear level the new
brane positions are simply given by

y = y±−ξ
∣
∣
∣
y=y±

. (23)

Hence, the perturbed brane positions are given by the brane bending scalars:

ξ± = ξ
∣
∣
∣
y=y±

, nA∂Aξ± = 0. (24)

Note that becauseξ + andξ− are explicitly evaluated at the brane positions, they are
essentially 4-dimensional scalars that exhibit no dependence on the extra dimension.

Having now delineated a set of variables that parameterize the fluctuations of the
black string braneworld, we now need to determine their equations of motion.
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3.2 Linearizing the bulk field equations

First, we linearize the bulk field equations (12) about the black string solution. No-
tice that (12) only depends on the bulk metric and the bulk matter distribution.
Hence, the linearized field equations will only involvehAB, T L

AB andT R
AB. The ac-

tual derivation of the equation proceeds in the same manner as in 4-dimensions, and
we just quote the result:

∇C∇ChAB −∇C∇AhBC −∇C∇BhAC +∇A∇BhC
C −8k2hAB = −2κ2

5Σbulk
AB , (25)

where
Σbulk

AB = Θ(+y)(T R
AB − 1

3T RgAB)+Θ(−y)(T L
AB − 1

3T LgAB). (26)

The wave equation (25) is valid for arbitrary choices of gauge and generic matter
sources. If we specialize to the Randall-Sundrum gauge

∇AhAB = 0, hA
A = 0, hAB = eα

A eβ
Bhαβ , (27)

eq. (25) reduces to

∆̂AB
CDhCD +(GMa)2(£2

n −4k2)hAB = −2(GMa)2κ2
5Σbulk

AB , (28)

where we have defined the operator

∆̂AB
CD =(GMa)2[qMN∇MqP

NqC
AqD

B ∇P +2(4)RA
C

B
D]

=(GMa)2eα
A eβ

B

[

δ γ
α δ δ

β ∇ρ ∇ρ +2Rα
γ
β

δ
]

q
eC

γ eD
δ

=(GM)2eα
A eβ

B

[

δ γ
α δ δ

β ∇ρ ∇ρ +2Rα
γ
β

δ
]

g
eC

γ eD
δ . (29)

Here,(4)RACBD is the Riemann tensor onΣy, which can be related to the 5-dimensional
curvature tensor via the Gauss equation

(4)RMNPQ = qA
MqB

NqC
PqD

QRABCD +2KM[PKQ]N . (30)

On the second line of (29) the 4-tensor inside the square brackets is calculated using
qαβ . We can re-express this object in terms of the ordinary Schwarzschild metric
gαβ , which is conformally related toqαβ via the warp factor:

qαβ = a2gαβ , (31a)

gαβ dzα dzβ = − f dt2 + f−1 dr2 + r2dΩ 2. (31b)

The quantity in square brackets on the third line of (29) is calculated fromgαβ .1

One can easily confirm that̂∆AB
CD is ‘y-independent’ in the sense that it commutes

1 Unless otherwise indicated, for the rest of the paper any tensorial expression with Greek indices
should be evaluated using the Schwarzschild metricgαβ .
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with the Lie derivative in thenA direction:

[(4)∆̂AB
CD,£n] = 0. (32)

In addition, the(GM)2 prefactor makeŝ∆AB
CD dimensionless.

Notice that the lefthand side of (28) is both traceless and manifestly orthogonal
to nA, which implies the following constraints on the bulk matter:

Σbulk
AB = eα

A eβ
BΣbulk

αβ , qαβ Σbulk
αβ = 0. (33)

In other words, our gauge choice is inconsistent with bulk matter that violates these
conditions. If we wish to consider more general bulk matter,we cannot use the
Randall-Sundrum gauge.

3.3 Linearizing the junction conditions

Next, we consider the perturbation of the junction conditions (13). These can be
re-written as

Q±
AB =

{

[1
2∇(AnB) −n(A|n

C∇Cn|B)]± kqAB +κ2
5

(
TAB − 1

3T qAB
)}±

= 0. (34)

We require thatQ±
AB vanish before and after perturbation, so we need to enforce that

the first order variationδQ±
AB is equal to zero.

In order to calculate this variation, we can regard the tensors Q±
AB as functionals

the brane positions (as defined byΦ), the brane normalsnA, the bulk metric, and the
brane matter:

Q±
AB = Q±

AB(Φ ,nM,gMN ,T±
MN), (35)

from which it follows that

δQ±
AB =

{
δQAB

δΦ
δΦ +

δQAB

δnC
δnC +

δQAB

δgCD
δgCD +

δQAB

δTCD
δTCD

}±

0
. (36)

The{· · ·}±0 notation is meant to remind us that after we have calculated the varia-
tional derivatives, we must evaluate the expression in the background geometry at
theunperturbed positions of the brane.

We now consider each term in (36). For simplicity, we temporarily focus on the
positive tension visible brane and drop the + superscript. The first term represents
the variation ofQ±

AB with brane position, which is covariantly given by the Lie deriv-
ative in the normal direction:

{
δQAB

δΦ
δΦ
}

0
= {−ξ £nQAB}0 . (37)
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But the Lie derivative ofQAB vanishes identically in the background geometry, so
this term is equal to zero.

The second term in (36) represents the variation ofQAB with respect to the normal
vector. Making note of the definition (3) ofnA in terms ofΦ , as well asδΦ = ξ and
nA∇Aξ = 0, we arrive at

δnA = ∇Aξ , nAδnA = 0. (38)

Notice that since the normal itself must be continuous across the brane, we have
[δnA] = 0. After some algebra, we find that the variation of the junction conditions
with respect to the brane normal is non-zero and given by

{
δQAB

δnC
δnC

}

0
= 2qC

AqD
B ∇C∇Dξ . (39)

The third term in (36) is the variation with the bulk metric itself δgAB = hAB.
Calculating this is straightforward, and the result is:

{
δQAB

δgCD
δgCD

}

0
= 1

2[£nhAB]+2khAB. (40)

The last variation we must consider is with respect to the brane matter fields, which
is trivial: {

δQAB

δTCD
δTCD

}

0
= κ2

5

(
TAB − 1

3T qAB
)
. (41)

So, we have the final result that

δQ±
AB =

{
2qC

AqD
B ∇C∇Dξ + 1

2[£nhAB]±2khAB +κ2
5

(
TAB − 1

3T qAB
)}±

0 = 0. (42)

If we take the trace ofδQ±
AB = 0, we obtain

qAB∇A∇Bξ± = 1
6κ2

5T±. (43)

These are the equations of motion for the brane bending degrees of freedom in our
model, which are seen to be directly sourced by the matter fields on each brane.

3.4 Converting the boundary conditions into distributionalsources

We can incorporate the boundary conditionsδQ±
AB = 0 directly into thehAB equation

of motion as delta-function sources. This is possible because the jump in the nor-
mal derivative ofhAB appears explicitly in the perturbed junction conditions. This
procedure gives
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∆̂AB
CDhCD − µ̂2hAB = −2(GMa)2κ2

5

[

Σbulk
AB + ∑

ε=±
δ (y− yε)Σ ε

AB

]

. (44)

Here, we have defined

µ̂2 = −(GMa)2

[

£2
n +

2κ2
5

3 ∑
ε=±

λ ε δ (y− yε)−4k2

]

,

Σ±
AB =

(
T±

AB − 1
3T±qAB

)
+

2

κ2
5

qC
AqD

B ∇C∇Dξ±. (45)

If we integrate the wave equation (44) over a small region traversing either brane,
we recover the boundary conditions (42).

Together with the gauge conditions,

nAhAB = qAC∇AhCB = 0 = qABhAB, (46)

(43) and (44) are the equations governing the perturbationsof our model.

4 Kaluza-Klein mode functions

The metric fluctuationhAB is governed by a system of partial differential equations
(PDEs). As is common in all areas of physics, the best way to solve such equations
is via a separation of variables. In this section, we separate they variables from the
conventional Schwarzschild variables onΣy. The part of the graviton wave function
corresponding to the extra dimension satisfies an ODE boundary value problem,
which implies that there is a discrete spectrum forhAB.

4.1 Separation of variables

As mentioned above, we have that

[∆̂AB
CD,£n]hCD = 0; (47)

i.e., ∆̂AB
CD is independent ofy when evaluated in the(t,r,θ ,φ ,y) coordinates. This

suggests that we seek a solution forhAB of the form

hAB = Zh̃AB, µ̂2Z = µ2Z, (48)

where,
0 = £nh̃AB and 0= qA

B∇AZ; (49)
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that is,Z is an eigenfunction of̂µ2 with eigenvalueµ2. The existence of the delta
functions in theµ̂2 operator means that we need to treat the even and odd parity
solutions of this eigenvalue problem separately.

4.2 Even parity eigenfunctions

If Z(−y) = Z(y), we see thatZ satisfies the following equations in the intervaly ∈
[0,d]:

m2Z(y) = −a2(y)(∂ 2
y −4k2)Z(y),

0 = [(∂y +2k)Z(y)]±,

µ = GMm.

(50)

There is a discrete spectrum of solutions to this eigenvalueproblem that are labeled
by the positive integersn = 1,2,3. . .:

Zn(y) = α−1
n [Y1(mnℓ)J2(mnℓek|y|)− J1(mnℓ)Y2(mnℓek|y|)], (51)

whereαn is a constant, andmn = µn/GM is thenth solution of

Y1(mnℓ)J1(mnℓekd) = J1(mnℓ)Y1(mnℓekd). (52)

There is also a solution corresponding tom0 = µ0 = 0, which is known as the zero-
mode:

Z0(y) = α−1
0 e−2k|y|, α0 =

√
ℓ(1− e−2kd)1/2. (53)

Hence, there exists a discrete set of solutions for bulk metric perturbations of the

form h(n)
AB = Zn(y)h̃

(n)
AB(zα). When n > 0 these are called the Kaluza-Klein (KK)

modes of the modes, and the mass of any given mode is given by themn eigenvalue.
Theαn constants are determined from demanding that{Zn} forms an orthonormal
set

δmn =

∫ d

−d
dya−2(y)Zm(y)Zn(y). (54)

These basis functions then satisfy:

δ (y− y±) =
∞

∑
n=0

a−2Zn(y)Zn(y±). (55)

This identity is crucial to the model — inspection of (44) reveals that the brane stress
energy tensors appearing on the righthand side are multiplied by one ofδ (y− y±).
Hence, brane matter only couples to the even parity eigenmodes ofµ̂2.
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Case 1: light modes

It is useful to have simple approximate forms of the Kaluza-Klein masses and nor-
malization constants for the formulae that appear later on.There are straightforward
to derive for modes that are ‘light’ compared to mass scale set by the AdS5 length
parameter:

mnℓ ≪ 1. (56)

Let us define a set of dimensionless numbersxn by:

xn = mnℓekd . (57)

Then for the light modes, we find thatxn is thenth zero of the first-order Bessel
function:

J1(xn) = 0. (58)

Also for light modes, the normalization constants reduce to

αn ≈ 2
√

ℓe2kd |J0(xn)|/πxn, n > 0. (59)

Actually, it is more helpful to know the value of the KK mode functions at the
position of each brane. We can parameterize these as

Zn(y±) =
√

ke−kdz±n , n > 0. (60)

For the light Kaluza-Klein modes, the dimensionlessz±n are given by

z±n ≈
{ |J0(xn)|−1

einπ

}

. (61)

Case 2: heavy modes

At the other end of the spectrum, we have the heavy Kaluza-Klein modes

mnℓ ≫ 1. (62)

Under this assumption, we find2

2 Strictly speaking, an asymptotic analysis leads to formulae withn replaced by another integern′

on the righthand sides of Eqns. (63). However, we note that for even parity modes,n counts the
number of zeroes ofZn(y) in the intervaly ∈ (0,d), which allows us to deduce thatn′ = n.
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xn ≈ nπ
1− e−kd , (63a)

Zn(y) ≈

√

ke−k|y|

ekd −1
cos

[

nπ
ek|y|−1
ekd −1

]

, (63b)

z±n ≈ 1√
1− e−kd

{

ekd/2

einπ

}

. (63c)

Unlike the analogous quantities for the light modes,z±n shows an explicit depen-
dence on the dimensionless brane separationd/ℓ.

4.3 Odd parity eigenfunctions

As mentioned above, brane matter only couples to Kaluza-Klein modes with even
parity. But a complete perturbative description must include the odd parity modes
as well; for example, if we have matter in the bulk distributed asymmetrically with
respect toy = 0 (i.e.T L

AB 6= T R
AB) modes of either parity will be excited. Hence, for

the sake of completeness, we list a few properties of the odd parity Kaluza-Klein
modes here.

AssumingZ(−y) = −Z(y), we have:

m2Z(y) = −a2(y)(∂ 2
y −4k2)Z(y),

0 = Z(y+) = Z(y−).
(64)

Again, we have a discrete spectrum of solutions, this time labeled by half integers:

Zn+ 1
2
(y) = α−1

n+ 1
2
[Y2(mn+ 1

2
ℓ)J2(mn+ 1

2
ℓek|y|)− J2(mn+ 1

2
ℓ)Y2(mn+ 1

2
ℓek|y|)]. (65)

The mass eigenvalues are now the solutions of

Y2(mn+ 1
2
ℓ)J2(mn+ 1

2
ℓekd) = J2(mn+ 1

2
ℓ)Y2(mn+ 1

2
ℓekd). (66)

Proceeding as before, we define

xn+ 1
2

= mn+ 1
2
ℓekd . (67)

For light modes withmn+ 1
2
ℓ ≪ 1, xn+ 1

2
is thenth zero of the second-order Bessel

function:
J2(xn+ 1

2
) = 0. (68)

Taken together, (58) and (68) imply the following for the light modes:

m1 < m3/2 < m2 < m5/2 < · · · ; (69)
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i.e., the first odd mode is heavier than the first even mode, etc.
Finally, we note that since the odd modes vanish at the background position of

the visible brane, it is impossible for us to observe them directly within the context
of linear theory. This can change at second order, since brane bending can allow us
to directly sample regions of the bulk whereZn+ 1

2
6= 0. However, this phenomenon

is clearly beyond the scope of this paper.

5 Recovering 4-dimensional gravity

Let us now describe the limit in which we recover general relativity. We assume
there are no matter perturbations in the bulk and on the hidden brane; hence, we
may consistently neglect the odd parity Kaluza-Klein modes. By virtue of the brane
bending equation of motion (43), we can consistently setξ− = 0. Furthermore, (55)
can be used to replace the delta function in front ofΣ+

AB in equation (44). We obtain,

∆̂AB
CDhCD − µ̂2hAB = −2(GM)2κ2

5Σ+
AB

∞

∑
n=0

Zn(y+)Zn(y). (70)

We now note that fore−kd ≪ 1,

Z0(y+) =
√

k(1− e−2kd)−1/2 ≫ Zn(y+), n > 0. (71)

That is, then > 0 terms in the sum are much smaller than the 0th order contribution.
This motivates an approximation where then > 0 terms on the righthand side of
(70) are neglected, which is the so-called ‘zero-mode truncation’.

When this approximation is enforced, we find thathAB must be proportional to
Z0(y); i.e., there is no contribution tohAB from any of the KK modes. Hence, we
haveµ̂2hAB = 0. The resulting expression has trivialy dependence, so we can freely
sety = y+ to obtain the equation of motion forhAB at theunperturbed position of
the visible brane:

∆̂AB
CDh+

CD = −2(GM)2κ2
5Σ+

ABZ2
0(y+) (72)

But we are not really interested inh+
AB, the physically relevant quantity is the pertur-

bation of the induced metric on the perturbed brane, which isdefined as the variation
of

q+
AB = [gAB −nAnB]+. (73)

We calculateδq+
AB in the same way as we calculatedδQ±

AB above (except for the
fact thatqAB shows no explicit dependence onT +

AB):

δq+
AB =

{
δqAB

δΦ
δΦ +

δqAB

δnC
δnC +

δqAB

δgCD
δgCD

}+

0
. (74)

These variations are straightforward, and we obtain:
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δq+
AB ≡ h̄+

AB = h+
AB +2kξ +q+

AB − (nA∇B +nB∇A)ξ +, (75)

where all quantities on the right are evaluated in the background and at the unper-
turbed position of the brane. Note thath̄ABnA 6= 0, which reflects the fact thatnA is
no longer the normal to the brane after perturbation.

We now define the 4-tensors

h̄+
αβ = eA

α eB
β h̄+

AB, T +
αβ = eA

α eB
β T +

AB. (76)

Here,h̄+
αβ is the actual metric perturbation on the visible brane. Notethat this per-

turbation is neither transverse or tracefree:

∇γ h̄+
γα = 2k∇α ξ +, gαβ h̄+

αβ = 8kξ +. (77)

We can now re-express the equation of motion (72) in terms ofh̄+
αβ instead ofh+

AB
using (75). Dropping the+ superscripts, we obtain

∇γ ∇γ h̄αβ +∇α ∇β h̄γ
γ −∇γ ∇α h̄βγ −∇γ ∇β h̄αγ =

−2Z2
+κ2

5

[

Tαβ − 1
3

(

1+
k

2Z2
+

)

T γ
γ gαβ

]

+(6k−4Z2
+)∇α ∇β ξ , (78)

where we have defined

Z2
+ = Z2

0(y+) = k(1− e−2kd)−1. (79)

In obtaining this expression, we have made use of theξ equation of motion:

gαβ ∇α ∇β ξ = 1
6κ2

5gαβ Tαβ . (80)

Note that we still have the freedom to make a gauge transformation on the brane
that involves an arbitrary 4-dimensional coordinate transformation generated byηα :

h̄αβ → h̄αβ +∇α ηβ +∇β ηα . (81)

We can use this gauge freedom to impose the condition

∇β h̄β
α − 1

2∇α h̄β
β = (2Z2

+ −3k)∇α ξ . (82)

Then, the equation of motion for 4-metric fluctuations reads

∇γ ∇γ h̄αβ +2Rα
γ
β

δ h̄γδ = −16πG

[

Tαβ −
(

1+ωBD

3+2ωBD

)

T γ
γ gαβ

]

, (83)

where we have identified

ωBD =
3
2
(e2d/ℓ −1), G =

κ2
5

8πℓ(1− e−2d/ℓ)
. (84)
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We see that (83) matches the equation governing gravitational waves in a Brans-
Dicke theory with parameterωBD. Hence in the zero-mode truncation, the pertur-
bations of the black string braneworld are indistinguishable from a 4-dimensional
scalar tensor theory.

Note that (83) must hold everywhere in our model, so we can consider the sit-
uation where our solar system is the perturbative brane matter located somewhere
in the extreme far-field region of the black string. The forces between the various
celestial bodies will be governed by (83) in theRαβγδ ≈ 0 limit. In this scenario,
solar system tests of general relativity place bounds on theBrans-Dicke parameter,
and henced/ℓ:

ωBD & 4×104 ⇒ d/ℓ & 5. (85)

This lower bound on the dimensionless brane separation willbe an important factor
in the discussion below.

6 Beyond the zero-mode truncation

In this section, we specialize to the situation where there is perturbative matter lo-
cated on one of the branes and no other sources. Unlike§5, our interest here is to
predict deviations from general relativity, so we will not use the zero-mode trunca-
tion. Just as in 4-dimensional black hole perturbation theory, we introduce the tensor
spherical harmonics to further decompose the equations of motion for a given KK
mode into polar and axial parts.

6.1 KK mode decomposition

To begin, we make the assumptions

Σbulk
AB = 0, andΣ+

AB = 0 or Σ−
AB = 0; (86)

i.e., we set the matter perturbation in the bulk and one of thebranes equal to zero.
Note that due to the linearity of the problem we can always addup solutions cor-
responding to different types of sources; hence, if we had a physical situation with
many different types of matter, it would be acceptable to solve for the radiation
pattern induced by each source separately and then sum the results.

We decomposehAB as

hAB =
κ2

5(GM)2

C
eα

A eβ
B

∞

∑
n=0

Zn(y)Zn(y±)h(n)
αβ . (87)

Here, C is a normalization constant (to be specified later) with dimensions of

(mass)−4, and the expansion coefficientsh(n)
αβ are dimensionless. We define a di-
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mensionless brane stress-energy tensors and brane bendingscalars by

Θ±
αβ = C eA

α eB
β T±

AB, ξ̃± =
C ξ±

(GM)2κ2
5

. (88)

Omitting the± superscripts, we find that the equation of motion forh(n)
αβ is

(GM)2
[

∇γ ∇γ h(n)
αβ +2Rα

γ
β

δ h(n)
γδ

]

−µ2
n h(n)

αβ =

−2
(
Θαβ − 1

3Θgαβ
)
−4(GM)2∇α ∇β ξ̃ , (89)

while the equation of motion for̃ξ is

∇α ∇α ξ̃ = 1
6Θ . (90)

We also have the conditions

∇α h(n)
αβ = ∇αΘαβ = 0 = gαβ h(n)

αβ . (91)

Note that in all of these equations, all 4-dimensional quantities are to be calculated
with the Schwarzschild metricgαβ . In particular,Θ = gαβΘαβ .

6.2 The multipole decomposition

In addition to the decomposition ofhAB in terms of KK mode functions, the symme-
try of the background geometry dictates that we decompose the problem in terms of
spherical harmonics:

ξ̃ =
∞

∑
l=0

l

∑
m=−l

Ylmξ̃lm, (92a)

h(n)
αβ =

∞

∑
l=0

l

∑
m=−l

10

∑
i=1

[Y (i)
lm ]αβ h(nlm)

i , (92b)

Θαβ =
∞

∑
l=0

l

∑
m=−l

10

∑
i=1

[Y (i)
lm ]αβ Θ (lm)

i . (92c)

Here,[Y (i)
lm ]αβ are the tensorial spherical harmonics in 4 dimensions, which are the

same quantities that appear in conventional black hole perturbation theory. The ten-
sor harmonics depend only on the angular coordinatesΩ = (θ ,φ), while the expan-
sion coefficients depend ont andr:

ξ̃lm = ξ̃lm(t,r), h(nlm)
i = h(nlm)

i (t,r), Θ (lm)
i = Θ (lm)

i (t,r). (93)
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To define the tensor harmonics, first define the orthonormal 4-vectors

tα = f−1/2∂t , rα = f 1/2∂r, θ α = r−1∂θ , φ α = (r sinθ)−1∂φ . (94)

The we define

γαβ = gαβ + tα tβ − rα rβ = θα θβ +φα φβ , tα γαβ = rα γαβ = 0, (95)

which is the projection tensor onto the 2-spheres of constant r andt, and the anti-
symmetric tensorεαβ = −εβα

εαβ = θα φβ −φα θβ . (96)

Using these objects, the[Y (i)
lm ]αβ are defined in Table 1.3

Table 1 The spherical tensor harmonics[Y (i)
lm ]αβ

indexi Polar harmonicsPilm
αβ Axial harmonicsAilm

αβ

1 f−1tα tβYlm 2 f−1/2t(α εβ )γ ∇γYlm

2 2t(α rβ )Ylm 2 f +1/2r(α εβ )γ ∇γYlm

3 f rα rβYlm γγ(α εβ )δ ∇δ ∇γYlm

4 −2t(α γβ )γ ∇γYlm · · ·
5 +2r(α γβ )γ ∇γYlm · · ·
6 r−2γαβYlm · · ·
7 γαγ γβδ ∇γ ∇δYlm · · ·

Notice that we have divided the ten tensor harmonics into twogroups labeled
‘polar’ and ‘axial’. This division is based on how they transform under the parity,
or space-inversion, operationr → −r. In particular, under this type of operation,
polar objects acquire a(−1)l factor, while axial quantities transform as(−1)l+1.4

It is useful to re-write the spherical harmonic decomposition of h(n)
αβ in terms of

explicitly polar and axial parts:5

h(n)
αβ =

∞

∑
l=0

l

∑
m=−l

7

∑
i=1

P
ilm
αβ (Ω)P

(n)
ilm(t,r)

︸ ︷︷ ︸

polar contributionh(n,polar)
αβ

+
∞

∑
l=0

l

∑
m=−l

3

∑
i=1

A
ilm
αβ (Ω)A

(n)
ilm (t,r)

︸ ︷︷ ︸

axial contributionh(n,axial)
αβ

. (97)

3 The definition of tensor harmonics is not unique; there are numerous other conventions in the
literature.
4 Alternatively, we can note that any tensor harmonic whose definition involves the pseudo-tensor
εab is automatically an axial object.
5 A similar decomposition forΘαβ also exists.
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In this expression and similar ones below, there is no summation over the spherical
harmonic ori index unless indicated explicitly.

It is easy to confirm that the parity operation commutes with the ∆̂AB
CD and µ̂2

operators in (44), or conversely commutes with the operatorδ γ
α δ δ

β ∇λ ∇λ +2Rα
γ

β
δ

in (89). Therefore, solutions of (89) that are eigenfunctions of the parity operator
with different eigenvalues are decoupled from one another;i.e., we can solve for

the dynamics ofh(n,polar)
αβ andh(n,axial)

αβ individually. As is common for spherically
symmetric systems, modes with different values ofl andm are also decoupled.

Before moving on, we should mention that the decomposition of the brane bend-
ing scalarξ̃ is given entirely in terms ofYlm; i.e., it is an explicitly polar quantity.
It follows that∇α ∇β ξ̃ is also a polar quantity, which means that the brane bending
contribution in (89) only sources polar GW radiation.

7 Homogeneous axial perturbations

In this section, we present the equations of motion for the axial moments ofh(n)
αβ

in the absence of all matter sources. As mentioned above, thebrane bending con-
tribution to (89) is a polar quantity. Therefore, the axial GW modes are completely
decoupled from the brane bending scalar. Hence, the equation we try to solve in this
section is simply:

(GM)2
[

∇γ ∇γ h(nlm,axial)
αβ +2Rα

γ
β

δ h(nlm,axial)
γδ

]

−µ2
n h(nlm,axial)

αβ = 0, (98)

where the total axial contribution toh(n)
αβ is

h(n,axial)
αβ = ∑

lm

h(nlm,axial)
αβ . (99)

In addition to this equation, remember that we also need to satisfy the gauge condi-
tions (91).

Notice that (98) reduces to the graviton equation of motion in ordinary GR for
mn = 0, which corresponds ton = 0. It turns out that then = 0 case must be handled
separately from then ≥ 0 case due to an enhanced gauge symmetry present in the
zero-mode sector. Therefore, for the purposes of this section we always assume
n ≥ 0.

7.1 High angular momentuml ≥ 2 radiation

In Table 1, notice that the axial harmonics are identically equation to zero forl = 0.
Also note that forl = 1, the third harmonic vanishesA3lm

lm = 0. This means that there
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are no axial harmonics forl = 0 and thatl = 1 is a special case. In this subsection,
we concentrate on thel ≥ 2 situation, where all of the axial tensor harmonics are
non-trivial.

The decomposition ofh(nlm,axial)
αβ explicitly reads

h(nlm,axial)
αβ = A

1lm
αβ (Ω)A

(n)
1lm(t,r)+A

2lm
αβ (Ω)A

(n)
2lm(t,r)+A

3lm
αβ (Ω)A

(n)
3lm(t,r). (100)

When this is substituted into the equation of motion (98) and gauge conditions (91),
we get four PDEs that must be satisfied by the three expansion coefficients. These
four equations are not independent, however, as the time derivative of one of them is
a linear combination of the other three. Removing this equation, it is possible to use

one of the other PDEs to algebraically eliminateA
(n)

1lm from the other two equations.
Defining the ‘master variables’

unlm(t,r) = f (r)A (n)
2lm(t,r), vnlm(t,r) = r−1

A
(n)

3lm(t,r), (101)

we eventually find that

0 =

(
∂ 2

∂ t2 − ∂ 2

∂ r2∗

)(
unlm

vnlm

)

+Vnl

(
unlm

vnlm

)

. (102)

Here,Vnl is a potential matrix, given by

Vnl = f

(
5 f
r2 + f ′′

2 − 2 f ′
r + l(l+1)−1

r2 +m2
n

f ′[2−l(l+1)]
2r

4
r2

f ′
r + l(l+1)−2

r2 +m2
n

)

, (103)

and the well-known tortoise coordinate is defined by

r∗ = r +2GM ln
( r

2GM
−1
)

. (104)

Hence, to describe homogeneous axial perturbations of the black string braneworld,
one needs to specify initial data forunlm andvnlm, solve the coupled wave equations
(102), and then use the definitions (109) to obtain the original expansion coefficients

A
(n)

2lm andA
(n)

3lm. The last step it to integrate one of the original equations of motion,

∂A
(n)

1lm

∂ t
= f 2 ∂A

(n)
2lm

∂ r
+

f (2 f + f ′r)
r

A
(n)

2lm +
f [l(l +1)−2]

2r2 A
(n)

3lm, (105)

to obtain the other expansion coefficientA
(n)

1lm. This procedure can be repeated for
each individual value ofn, l, andm. However, it should be noted that since the po-
tential matrix does not explicitly depend onm, solutions that share the same values
of n andl only really differ from one another by the choice of initial data.

Why are we interested in solving homogeneous problems like the one presented
in this section? Recall that in the case of 4-dimensional black hole perturbation
theory, the numeric solution of the homogeneous axial wave equation lead to the
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discovery of quasinormal modes. In other words, by examining the solutions of
equations such as (102), one can learn a lot about the characteristic behaviour of a
system when perturbed away from equilibrium, which is what we shall do in§7.3.
The solution of the homogeneous problem can also have some direct observational
significance, since it can describe how the system settles down into its equilibrium
state after some event. That is, we expect the late time axialgravitational wave signal
from a black string to be described by the solutions of (102) after a black string is
formed or undergoes some traumatic event.

Before moving on, it is worthwhile to note the asymptotic behaviour of the po-
tential matrix:

lim
r∗→−∞

Vnl = 0, lim
r→+∞

Vnl =

(
m2

n +O(r−1) O(r−3)
O(r−2) m2

n +O(r−1)

)

. (106)

For r∗ → −∞, which corresponds to the black hole horizon, we see thatunlm and
vnlm behave as free massless scalars. Conversely, far away from the black hole they
behave as decoupled scalars of massmn. It turns out that the asymptotic form ofVnl

asr → ∞ is crucial in determining the characteristic GW signal froma black string,
as we will see below.

7.2 Axial p-waves

For the sake of completeness, we can write down the equationsof motion governing
thel = 1, or p-wave, sector. In this case, general fluctuations are described by

h(n1m,axial)
αβ = A

1,1,m
αβ (Ω)A

(n)
1,1,m(t,r)+A

2,1,m
αβ (Ω)A

(n)
2,1,m(t,r). (107)

In this case, when we substitute this into the equation of motion (98), we find a
single master equation

0 = (∂ 2
t −∂ 2

r∗)un1m +Vn1un1m, (108)

where
un1m(t,r) = f (r)A (n)

2,1,m(t,r), (109)

and the potential is

Vn1 = f

(
5 f +1

r2 − 2 f ′

r
+

f ′′

2
+m2

n

)

. (110)

Once this equation is solved andA
(n)

2,1,m is found, the remaining expansion coefficient
is determined by a quadrature:

∂A
(n)

1,1,m

∂ t
= f 2

∂A
(n)

2,1,m

∂ r
+

f (2 f + f ′r)
r

A
(n)

2,1,m. (111)
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Notice that this is identical to (105) withl = 1.
One comment on thel = 1 perturbations is in order before we proceed. In ordi-

nary black hole perturbation theory, there are no truly time-dependentp-wave per-
turbations of the Schwarzschild spacetime. This is becausethe l = 1 perturbations
correspond to giving the black hole a small amount of angularmomentum about
some axis in 3-space; i.e., they represent the linearization of the Kerr solution about
the Schwarzschild background, and are hence time-independent. In the black string
case, however, thel = 1 perturbation can be viewed as endowing a small spin to
the Schwarzschild 4-metrics on eachΣy hypersurface. However, the amount of spin
delivered to each hypersurface by each massive mode is not uniform, in fact it is
easily shown that it is proportional toZn(y) evaluated at that hypersurface. In other
words, dipole perturbations give rise to a differentially rotating black string, where
the amount of rotation varies withy. It turns out that there is no time-independent
black string solution of this type, so we have dynamic perturbations. The exception
is the zero moden = 0, which gives rise to a uniform rotation of the black string;
i.e., these perturbations give rise to the linearization of(18) about (15).

7.3 Numeric integration of quadrupole equations

In Figure 2, we present the results of some numerical solutions of equation (102)
for the case of quadrupole radiationl = 2. In this plot, we assume that we have
Gaussian initial data forun2m on some initial time slice and thatvn2m = 0 initially. It
turns out that the particular choice of initial data does notmuch affect the outcome
of the simulations; that is, changing the shape or location of the initial Gaussian, or
takingvn2m 6= 0, results in very similar waveforms.

The key feature of the displayed waveforms is the nature of the late time signal.
We see that each of then > 0 waveforms exhibits very long-lived late time oscilla-
tions.6 This behaviour is totally unlike the standard picture of black hole oscillations
in GR, where one expects the late time ringdown waveform to bea featureless power
law tail. This kind of signal is exhibited by then = 0 zero-mode signal, which we al-
ready know corresponds exactly to the GR result. One of the most remarkable things
about the massive mode signal is that it is present for all types of initial data, sug-
gesting that it is a fundamental property of the black stringas opposed to just some
simulation fluke. In this sense the massive mode tail observed here is analogous to
the quasinormal modes of standard 4-dimensional theory.

An exercise in curve-fitting reveals that the late time massive signal is well mod-
eled by

{
un2m

vn2m

}

∼ const×
( t

GM

)−5/6
sin(mnt +φ). (112)

That is, the frequency of oscillation matches the mass of themode. The decay rate
∼ t−5/6 is much slower than the decay of the zero-mode signal, which decays at

6 A mathematical rationalization of this is given is§10.2.2.
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Fig. 2 Results of the integra-
tion of the quadropole axial
equations of motion. The
waveforms are observed at
r∗ = 100GM while the initial
data was originally located at
r∗ = 50GM. We show results
for the n = 0,1,2,3 modes.
The massive mode signals
are characterized by a long-
lasting oscillating tail; i.e.
un2m andvn2m are proportional
to (t/GM)−5/6 sin(mnt +φ) at
late times forn > 0 (here,φ is
a phase angle). This is in con-
trast to the zero-mode result,
which shows no oscillations
and a power law decay at late
times. (The inset shows the
zero mode result on a log-log
scale.)

least as fast ast−4. We can confirm via simulations that these result holds for other
values ofl. Hence, we are lead to the following important conclusion:

Irrespective of the initial amplitudes of the various KK modes, if one waits
long enough the GW signal from a perturbed black string will be dominated
by a superposition of slowly-decaying massive modes.

A challenge for gravitational wave astronomy is to observe these massive mode
signals directly. The actual prospects of doing this are discussed in§10.4.

8 Spherical perturbations with source terms

We can re-write the decomposition (113) by explicitly pulling out the spherical con-
tributions:
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ξ̃ =
ξ (s)
√

4π
+

∞

∑
l=1

l

∑
m=−l

Ylmξ̃lm, (113a)

h(n)
αβ =

h(n,s)
αβ√
4π

+
∞

∑
l=1

l

∑
m=−l

10

∑
i=1

[Y (i)
lm ]αβ h(nlm)

i , (113b)

Θαβ =
Θ (s)

αβ√
4π

+
∞

∑
l=1

l

∑
m=−l

10

∑
i=1

[Y (i)
lm ]αβ Θ (lm)

i . (113c)

Here,ξ (s), h(n,s)
αβ andΘ (s)

αβ represent the spherically-symmetric parts of the brane-
bending scalar, metric perturbation, and brane stress-energy tensor, respectively. In
this section, we are going to concentrate on the dynamics of this sector when there
are non-trivial matter sources on one of the branes sourcinggravitational radiation.
The reason that we focus on thel = 0, or s-wave, sector is computational conve-
nience; the equations of motion become rather involved for higher multipoles.

Before starting to calculate things, we note that some readers may be a little
confused as to why we are even looking at spherically-symmetric gravitational ra-
diation. In general relativity, it is a well-known consequence of Birkhoff’s theo-
rem that there is no spherically-symmetric radiation abouta Schwarzschild black
hole. This is because the theorem states that the only solutions to the Einstein equa-
tions with cosmological constant with structureR

2 × Sd are (d + 2)-dimensional
Schwarzschild-de Sitter or Schwarzschild anti-de Sitter black holes. Since these are
static solutions, any perturbation that respects theSd symmetry of the background
must also be static.7 But the black string background has structure(R2×S2)×S/Z2.
Birkhoff’s theorem does not apply in this case and we can indeed have time-
dependant solutions ofGAB = 6k2gAB with the same structure. Therefore, it is possi-
ble to have dynamical spherically-symmetric radiation around a black string, which
is what we study in this section.

8.1 Spherical master variables

We write thel = 0 contribution to the metric perturbation as

h(n,s)
αβ = H1 tα tβ −2H2 t(α rβ ) +H3 rα rα +Kγαβ , (114)

where the 4-vectors andγαβ are defined in (94) and (95), respectively. Each of the
expansion coefficients is a function oft andr; i.e., Hi = Hi(t,r) andK = K(t,r).

Notice that the condition thath(n,s)
αβ is tracefree implies

K = 1
2(H1−H3). (115)

7 Static here means that one can find a gauge in which the perturbation does not depend on time.
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Before going further, it is useful to define dimensionless coordinates:

ρ =
r

GM
, τ =

t
GM

, x = ρ +2ln
(ρ

2
−1
)

. (116)

Then, when our decompositions (113) are substituted into the equations of motion,
we find that all components of the metric perturbation are governed by master vari-
ables

ψ =
2ρ3

2+ µ2
n ρ3

(

ρ
∂K

∂τ
− f H2

)

, ϕ = ρ
∂ξ (s)

∂τ
. (117)

Both ψ = ψ(τ,x) andϕ = ϕ(τ,x) satisfy simple wave equations:

(∂ 2
τ −∂ 2

x +Vψ)ψ = Sψ + Î ϕ, (118a)

(∂ 2
τ −∂ 2

x +Vϕ)ϕ = Sϕ . (118b)

The potential and matter source term in theψ equation are:

Vψ =
f

ρ3 (2+ρ3µn
2)2

[

µn
6ρ9 +6µn

4ρ7−18µn
4ρ6

−24µn
2ρ4 +36µn

2ρ3 +8
]

,

(119a)

Sψ =
2 f ρ3

3(2+ µ2
n ρ3)2

[

ρ(2+ µ2
n ρ3)∂τ(2Λ1 +3Λ3)

+6(µ2
n ρ3−4) fΛ2

]

.

(119b)

Here, we have defined the following three scalars derived from the dimensionless

stress-energy tensorΘ (s)
αβ :

Λ1 = −Θ (s)
αβ gαβ , Λ2 = −Θ (s)

αβ tα rβ , Λ3 = +Θ (s)
αβ γαβ . (120)

The potential and source terms in the brane-bending equation are somewhat less
involved:

Vϕ =
2 f
ρ3 , Sϕ =

ρ f
6

∂τΛ1. (121)

Finally, the interaction operator is

Î =
8 f

(2+ µ2
n ρ3)2

[
6 f ρ2∂ρ +(µ2

n ρ3−6ρ +8)
]
. (122)
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8.2 Inversion formulae

Assuming that we can solve the wave equations (118) for a given source, we need
formulae that allow us to expressHi, K in terms ofψ andϕ in order to make gravi-
tational wave prediction. This can be derived by inverting the master variable defin-
itions (117) with the aid (118). The general formulae are actually very complicated
and not particularly enlightening, so we do not reproduce them here. Ultimately, to
make observational predictions it is sufficient to know the form of the metric per-
turbation far away from the black string and the matter sources, so we evaluate the
general inversion formulae in the limit ofρ → ∞ and withΛi = 0:

∂τH1 =
1
ρ

[(

∂ 2
τ +

3
ρ

∂ρ + µ2
n

)

ψ +
4

µ2
n

(

∂ 2
τ − 1

ρ
∂ρ

)

ϕ
]

,

H2 =
1
ρ

[(

∂ρ +
2
ρ

)

ψ +
4

µ2
n

(

∂ρ −
1
ρ

)

ϕ
]

,

∂τH3 =
1
ρ

[(

∂ 2
τ +

1
ρ

∂ρ

)

ψ +
4

µ2
n

(

∂ 2
τ − 2

ρ
∂ρ

)

ϕ
]

,

∂τK =
1
ρ

[(
1
ρ

∂ρ +
µ2

n

2

)

ψ +
4

µ2
n ρ

(

∂ρ −
1
ρ

)

ϕ
]

. (123)

Note that these do not actually complete the inversion; in most cases, a quadrature
is also required to arrive at the final form of the metric perturbation.

8.3 The Gregory-Laflamme instability

We now discuss one extremely important consequence of the equation of motion
(118). Note that we can always add-on a solution of the homogeneous wave equa-
tion:

0 = (∂ 2
τ −∂ 2

x +Vψ)ψ, (124)

to any particular solutionψp of (118a) generated by a given source. If we analyze
this homogenous equation in Fourier space by settingψ(τ,x) = eiωτΨ(x), we find
that

ω2Ψ = −d2Ψ
dx2 +VψΨ . (125)

This is identical to the time-independent Schrödinger equation from elementary
quantum mechanics withω2 playing the role of the energy parameter. Now, sup-
pose that the potential supports a bound state solution withnegative energyω2 < 0.
That is, suppose we can find a solution of this ODE withΨ → 0 asx → ±∞ with
ω =−iΓ , whereΓ > 0. In such cases,ψ ∝ eΓ t and we have an exponentially grow-
ing solution to the equations of motion, which represents a linear instability of the
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system. Since such a tachyonic modeψ is spatially bounded and arbitrary small in
the past, it is possible for any initial data with compact support to excite it.

Clearly, the black string braneworld cannot be a viable black hole model if we
can find such a tachyonic mode. It turns out that the potentialVψ (119a) is not
actually capable of supporting a negative energy bound state for all values ofµ .
There are numerous ways of demonstrating this; including the WKB method and
direct numeric solution of (125). One finds that no bound state exists if

µn > µc ≈ 0.4301 orµn = 0. (126)

That is, the zero-mode of thes-wave sector is stable8, and the high-mass modes are
also stable. This implies that the black string braneworld is perturbatively stable if
the smallest KK mass satisfies

µ1 = GMm1 > µc ≈ 0.4301. (127)

Under the approximation that the first mode is light (x1e−kd ≪ 1) and usingG =
ℓPl/MPl, this gives a restriction on the black string mass

M
MPl

&
ℓ

ℓPl

µc

x1
ekd , (128)

or equivalently,
M

M⊙
& 8×10−9

(
ℓ

0.1 mm

)

ed/ℓ. (129)

If we takeℓ = 0.1 mm, then we see that all solar mass black holes will in actuality
be stable black strings provided thatd/ℓ . 19. The stability of the black string
braneworld is summarized in Figure 3.

Fig. 3 The stability of the
black string braneworld
model. If the black string
massM, or the brane sepa-
rationd is selected such that
GM/ℓ andd/ℓ lies outside of
the ‘unstable configurations’
configurations portion of pa-
rameter space, the model is
stable. We have also indicated
thed/ℓ & 5 limit imposed by
the low energy scalar-tensor
limit of the model in the solar
system (c.f.§5).

Before moving on, we have two final comments: First, we shouldnote that all
black strings are unstable if the distance between the branes becomes larged → ∞.

8 One can show that this is actually a gauge mode



30 Sanjeev S. Seahra

This essentially means that there is no stable black string solution when the extra
dimension is infinite. This is the well known Gregory-Laflamme instability of black
strings (7; 8). Second, if we denote the minimum mass stable black string to beMGL

for a givend/ℓ, note that we do note claim that black holes withM < MGL do not
exist in this braneworld setup. Rather, such small mass black holes are not described
by the black string bulk. They would instead be described by some localized black
hole solution that has yet to be obtained. It has been suggested in the literature that
the transition between the localized black hole and black string may be a violent
first order phase transition, an hence be a significant sourceof gravitational radiation
(12).

9 Point particle sources on the brane

Up until this point, we have either been discussing homogenous equations or generic
sources. As an illustration of a more specific application ofthe formulae we have
derived, we specialize to the situation where the perturbing brane matter is a ‘point
particle’ located on one of the branes. Our goal is to explicitly write down the equa-
tions of motion for the GWs emitted by the particle. This is a situation of a sig-
nificant astrophysical interest in 4-dimensions, because it is thought to be a good
model of ‘extreme-mass-ratio-inspirals’ (EMRIs). This isa scenario when an ob-
ject of massMp merges with a black hole of massM. WhenMp ≪ M, it is a good
approximation to replace the small body with a point particle, or delta-function,
source. Our interest here is to generalize this standard 4-dimensional calculation to
the black string background.

One caution is in order before we proceed: It is not entirely clear that the delta-
function approximation is a good one to make in the braneworld scenario. In 4 di-
mensions, there are only two length scales in the problem: the two Schwarzschild
radii 2GM and 2GMp.9. Hence, an extreme scenario is well defined when one scale
is much larger than the other. However, in the braneworld scenario there is an addi-
tional length scaleℓ. In typical situations,ℓ ≪ 2GMp ≪ 2GM. It is unclear whether
or not it is valid to model the perturbing body as a point particle in this case, since
a point particle always has a physical size less thanℓ. However, it the absence of a
better source model, we will pursue the point particle description here, while always
keeping this caveat in mind.

9.1 Point particle stress-energy tensor

We take the particle Lagrangian density to be

9 We generally consider cases where the physical size of the perturbing particle is close to its
horizon radius, as for neutron stars, etc.
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L
±
p =

Mp

2

{
∫ δ 4(zµ − zµ

p )√−q
qαβ

dzα
p

dη
dzβ

p

dη
dη

}±

. (130)

In this expression,η is a parameter along the particle’s trajectory as defined by the
qαβ metric, zµ

p are the 4 functions describing the particle’s position on the brane,
andMp is the particle’s mass parameter. Using (13, we find the stress-energy tensor

T±
αβ = Mp

{
∫ δ 4(zµ − zµ

p )√−q
qαρ qβλ

dzρ
p

dη
dzλ

p

dη
dη

}±

. (131)

The contribution from the particle to the total action is

S±p =
1
2

∫

Σ±

L
±
p =

Mp

4

∫

q±αβ
dzα

p

dη
dzβ

p

dη
dη . (132)

Varying this with respect to the trajectoryzα
p and demanding thatη is an affine

parameter yields that the particle follows a geodesic alongthe brane:

d2zα
p

dη2 +Γ α
βγ [q

±]
dzβ

p

dη
dzγ

p

dη
= 0, −1 = q±αβ

dzα
p

dη
dzβ

p

dη
, (133)

whereΓ α
βγ [q

±] are the Christoffel symbols defined with respect to theq±αβ metric.
We note that the above formulae make explicit use of the induced brane metrics

q±αβ . However, all of our perturbative formalism is in terms of the Schwarzschild
metric gαβ , especially the definition of theΛi scalars (120). Hence, it is useful to
translate the above expressions using the following definitions:

η = a±λ , uα =
dzα

p

dλ
, −1 = gαβ uα uβ . (134)

Then, the stress-energy tensor and particle equation of motion become

T±
αβ =

Mp

a±

∫ δ 4(zµ − zµ
p )√−g

uα uβ dλ , uα ∇α uβ = 0. (135)

Note that the only difference between the stress-energy tensors on the positive and
negative tension branes is an overall division by the warp factor.

By switching over to dimensionless coordinates, transforming the integration
variable toτ from λ , and making use of the spherical harmonic completeness rela-
tionship, we obtain

T±
αβ =

f
C±Eρ2 uα uβ δ (ρ −ρp)

[

1
4π

+
∞

∑
l=1

l

∑
m=−l

Ylm(Ω)Y ∗
lm(Ωp)

]

. (136)

Here, we have defined
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C± =
(GM)3

Mpeky±
, E = −gαβ uα ξ β

(t), ξ α
(t) = ∂t . (137)

As usual,E is the particle’s energy per unit rest mass defined with respect to the
timelike Killing vectorξ α

(t).

9.2 Thes-wave sector

Comparing (88) and (113c) with (136), we see that

Θ (s)
αβ =

f√
4πEρ2

uα uβ δ [ρ −ρp(τ)], (138a)

Λ1 =
f√

4πEρ2
δ [ρ −ρp(τ)], (138b)

Λ2 =
Eρ̇p√
4π f ρ2

δ [ρ −ρp(τ)], (138c)

Λ3 =
f L̃2

√
4πEρ4

δ [ρ −ρp(τ)], (138d)

whereρ̇p = dρp/dτ. Here, we have identifiedL as the total angular momentum of
the particle (per unit rest mass), defined by

L2

r2 = γαβ uα uβ , L̃ =
L

GM
. (139)

Note that for particles traveling on geodesics,E andL are constants of the motion.
These are commonly re-parameterized in terms of the eccentricity e and the semi-
latus rectump, both of which are non-negative dimensionless numbers:

E2 =
(p−2−2e)(p−2+2e)

p(p−3− e2)
,

L̃2 =
p2

p−3− e2 .

(140)

The orbit can then be conveniently described by the alternative radial coordinateχ ,
which is defined by

ρ =
p

1+ ecosχ
. (141)

Taking the plane of motion to beθ = π/2, we obtain two first order differential
equations governing the trajectory
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dχ
dτ

=

[

(p−2−2ecosχ)2(p−6−2ecosχ)

ρ4
p(p−2−2e)(p−2+2e)

]1/2

,

dφ
dτ

=

[

p(p−2−2ecosχ)2

ρ4
p(p−2−2e)(p−2+2e)

]1/2

.

(142)

These are well-behaved thorough turning points of the trajectorydρp/dt = 0. When
e < 1 we have bound orbits such thatp/(1+e) < ρp < p/(1−e), while fore > 1 we
have unbound ‘fly-by’ orbits whose closest approach isρp = p/(1+ e). To obtain
orbits that cross the future event horizon of the black string, one needs to apply a
Wick rotation to the eccentricitye 7→ ie and make the replacementχ 7→ iχ + π/2.
Then a radially infalling particle corresponds toe = ∞.

It is worthwhile to write out the associated source terms in the wave equation
explicitly as a function of orbital parameters

Sψ =
2 f 2ρ̇p

3
√

4πE(2+ µ2ρ3)

[

− (2ρ2 +3L̃2)δ ′[ρ −ρp(τ)]

+
6ρE2

f

(
µ2ρ3−4
µ2ρ3 +2

)

δ [ρ −ρp(τ)]

]

,

Sϕ = − f 2ρ̇p

6
√

4πEρ
δ ′[ρ −ρp(τ)]. (143)

Note that

|ρ̇p| < f ,

ρ̇p = 0 ⇒ Sψ = Sϕ = 0,

E ≫ 1 ⇒ Sψ ≫ Sϕ .

(144)

That is, the particle’s speed is always less than unity, the sources wave equation
vanish if the particle is stationary or in a circular orbit, and high-energy trajectories
imply that the system’s dynamics are not too sensitive to brane-bending modesψ ≫
ϕ.

Numeric solutions of the spherical equations of motion witha point particle
source have been obtained elsewhere (4). A major consideration in performing such
simulations is that the sources in the save equations are distributional, and hence
must be regulated in some way. In (4), the authors regulated the delta-functions by
replacing them with thin Gaussians. In Figure 4, we show the results of such a simu-
lation when the perturbing particle is undergoing a periodic orbit. One observes that
the GW signal for from the brane is essentially that of a pure massive mode signal.
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Fig. 4 The steady-state KK gravitational wave signal induced by a particle undergoing a periodic
orbit around the black string withµ = 0.5. The orbit (bottom left) has eccentricitye = 0.5 and
angular momentump = 3.62. The waveform of radiation falling into the black string isquite
different than that of radiation escaping to infinity: The infalling signal precisely mimics the orbital
profile of the source, while the outgoing signal is dominated by monochromatic radiation whose
frequency is proportional to the KK massµ.

10 Estimating the amplitude of the massive mode signal

We have seen in previous sections that if we consider a black string relaxing to
its equilibrium configuration or if we look at the GWs emitted by a small particle
orbiting the black string, the signal is dominated by massive mode oscillations. The
question is: are these oscillations observable? The ability of a GW detector to see
a given signal depends on that signal’s frequency and its amplitude. The frequency
of massive mode signals is well-defined, it is simply given bythe solution of the
eigenvalue problem presented in§4. However, the amplitude is difficult to pin down
unless we consider a specific situation. So in this section, we concentrate on the
s-wave massive modes emitted by a particle in orbit about a black string. We will be
interested in the entire massive mode spectrum; i.e., all values ofn. To estimate the
GW amplitude associated with heavy modes we will need to analyze the asymptotics
of the Green’s function solution of the coupled wave equations (118).

10.1 Green’s function analysis

The formal solution to the coupled wave equations (118) can be written in terms of
the Green’s functions

(∂ 2
τ −∂ 2

x +Vψ)G(τ;x,x′) = δ (τ)δ (x− x′), (145a)

(∂ 2
τ −∂ 2

x +Vϕ)D(τ;x,x′) = δ (τ)δ (x− x′). (145b)
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To preserve casuality in the model, we demand thatG andD satisfy retarded bound-
ary conditions. That is, they are identically zero if the field point (τ,x) is not con-
tained within the future light cone the source point(0,x′).

In terms of these Green’s functions, we have

ψ(τ,x) = ψ1(τ,x)+ψ2(τ,x),

ψ1(τ,x) =
∫

dτ ′dx′ G(τ − τ ′;x,x′)Sψ(τ ′,x′),

ψ2(τ,x) =
∫

dτ ′dx′ G(τ − τ ′;x,x′)Î (τ ′,x′)ϕ(τ ′,x′),

ϕ(τ,x) =
∫

dτ ′dx′ D(τ − τ ′;x,x′)Sϕ(τ ′,x′). (146)

Note the decomposition ofψ into a contributionψ1 from the matter sourceSψ , and
a contributionψ2 from from brane bendingϕ. These expressions suggest that if we
knew the two Green’s functions explicitly, the gravitational wave master variable
and brane-bending scalar would be given by quadrature.

Unfortunately,G andD are not known in closed form, so we have to resort to
numeric computations to accurately calculate the values ofψ andϕ induced by a
particular source, and for a particular choice ofµ . However, any given source will
excite all the KK modes to some degree, so to rigourously model the spherical grav-
itational radiation we would need to do an infinite number of numeric simulations,
one for each discrete value ofµ . This is not practical, so our goal here is to use the
asymptotic behaviour of the propagators to determine the transcendental properties
of the emitted radiation and how these scale with the dimensionless Kaluza-Klein
mass.

10.2 Asymptotic behaviour

In this subsection, we outline the behaviour of the two retarded Green’s functions
G andD under the assumption that the the field point is deep within the future light
cone of the source point, and is also far away from the string.This is the relevant
limit to take if we are interested in the ‘late time’ gravitational wave signal seen by
distant observers.

10.2.1 Brane bending propagator

First, consider the brane bending Green’s function. Note that the brane bending po-
tentialVϕ is identical to that for thel = 0 component of a spin-0 field propagating in
the Schwarzschild spacetime. This is because the brane bending equation of motion
(43) is essentially that of a massless Klein-Gordon field. Fortunately, this propagator
has been well studied in the literature, and one can show that
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D(τ;x,x′) ∼ τ−3, τ ≫ x′− x > 0. (147)

This result is most easily interpreted if one considers the initial value problem for
ϕ. That is, we switch off the source in (43) and prepare the fieldin some initial state
on a given hypersurface. Then, a distant observer measuringϕ at late times would
see the field amplitude decay in time as a power-law with exponent−3.

10.2.2 Gravitational wave propagator

The retarded Green’s function for potentials similar toVψ have also been considered
in the literature. It turns out that the asymptotic character of the potential is the
crucial issue. Koyama & Tomimatsu (13) have demonstrated that for potentials of
the form

Vψ
r−→
∞

µ2
n +O

(
1
r

)

, (148)

the Green’s function has the asymptotic form

G(τ;x,x′) ∼ µ−1/2
n τ−5/6sin[µnτ +φ(τ)], τ ≫ x′− x > 0. (149)

The form of this Green’s function rationalizes the waveforms seen in Figure 2, es-
pecially thet−5/6 envelope of the late time signal, despite the fact that the governing
equations (102) were matrix-valued. The key point is the asymptotic form of the po-
tential matrix (106), which says that far from the string thetwo degrees of freedom
are decoupled and governed by a potential of the form (148).

Comparing this expression to the asymptotic form ofD above, we see thatG
decays much slower. This suggests thatψ1 ≫ ψ2 at late times in equation (146); i.e.,
the portion of the GW signal sourced directly by the stress-energy tensor dominates

the brane-bending contribution. Also note the overallµ−1/2
n scaling of the Green’s

function with the KK mass of the mode. We will use this below.

10.3 Application to the point particle case forn ≫ 1: Kaluza-Klein
scaling formulae

Let us now use the asymptotic Green’s functions in the case where the perturbing
matter is a point particle. Our goal is to estimate how the KK signal scales withn
for the high mass KK modes.

When the matter stress energy tensor has delta-function support, the
∫

dτ ′dx′

integrals in (146) reduce to line integrals over the portionof the particle’s worldline
inside of the past light cone. Now, working in the late-time far field limit, we know
that the brane-bending contribution to the signal is minimal. We also focus on the
high n modes; i.e.,

µn ≫ 1. (150)
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Concentrating on the direct signal produced by the particle, we see that the source
term Sψ for a point particle (9.2) seems to scale asµ−2

n . However, note that the
source also involves the derivative of a delta function, which means we must perform
an integration by parts. This brings a derivative ofG with respect to time into the

mix. Again assuming thatµn ≫ 1, we see∂τ G ∼ µ1/2
n eiµnτ . The net result is that we

expect

ψ ∝ µ−3/2
n , µn ≫ 1. (151)

That is, all other things being equal, the spherical master variable for a given KK

mode scales asµ−3/2
n .

But this is not the entire solution to the problem, since we donot actually observe

ψ, we observehAB. So we need to use the inversion formulae (123) to obtainh(n,s)
αβ

and then (87) to get the spherical part ofhAB. The detailed analysis leads to the
following late-time/distant-observer approximation forthe KK metric perturbations:

h(n,s)
AB ≈ hnF (t)sin(ωnt +φn) diag

(
0,+1,−1

2r2,−1
2r2sin2 θ ,0

)
, (152)

whereF (t) is a slowly-varying function of time that depends on the details of the
initial data. The characteristic amplitudeshn are given by

hn =
√

8πA

(
2GMp

r

)(
2GM

ℓ

)−1/2

Fn(d/ℓ). (153)

Here,r is the distance between the observer and the string, andA is a dimensionless
quantity that depends on the orbit of the perturbing particle but not onn or any other
parameters; its value must be determined from simulations.Fn(d/ℓ) is a complicated
expression involving Bessel functions with the following limiting behaviour: When
the perturbing matter is on our brane

Fn(d/ℓ) ≈
{

1
2e−3d/2ℓ(nπ3)1/2, n ≪ 2ed/ℓ/π2,

e−d/2ℓ(nπ)−1/2, n ≫ 2ed/ℓ/π2.
(154a)

On the other hand, for particles on the shadow brane:

Fn(d/ℓ) ≈
{

e−d/2ℓ(π/2)1/2, n ≪ 2ed/ℓ/π2,

(nπ)−1/2, n ≫ 2ed/ℓ/π2.
(154b)

Finally, to a good approximation, the KK frequencies are given by

ωn = 2π fn ≈
c
ℓ

(
n+ 1

4

)
πe−d/ℓ. (155)

We note that even though these formulae were derived in the context of the largen
approximation, they are actually reasonable approximations to the smalln case as
well.
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source on visible brane

source on shadow brane

Fig. 5 Characteristic amplitudes of KK radiation emitted by point particles on the visible brane or
the shadow brane as follows from equation (153). The particular parameters for this example are
indicated just above the plot. Also shown is a dimensionally reduced version of the characteristic
strain sensitivity of advanced LIGO for comparison.

10.4 Observability of the massive mode signal

We now have an expression (152) for the amplitude of the spherical massive modes
in terms of a parameterA that can be determined from simulations withµn small.
This amplitude varies with the type of orbit generating the GWs: it can beO(10−6)
or smaller for periodic orbits, or as high asO(1) for ‘zoom-whirl’ orbits.10

In Figure 5, we plot the characteristic amplitudeshn as a function of their fre-
quency for a scenario where a 1.4M⊙ object is orbiting a 10M⊙ black string at a
distance of 1kpc away. Several general trends are obvious:

• the amplitude of the GW signal decreases with increasing brane separationd/ℓ;
• the lowest frequency in the spectrum also decreases with increasing brane sepa-

rationd/ℓ;
• for a source on the visible brane, the spectrum is peaked about a critical frequency

given by

fcrit =
1

π2ℓ
∼ 304GHz

(
ℓ

0.1mm

)−1

; (156)

• when the perturbing particle is on the shadow brane, the spectrum is flat under-
neath the critical frequencyfcrit; and,

10 These are orbits where the particle comes in from infinity, is briefly captured by the black string,
and then escapes to infinity again.
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• in all cases, the signal from shadow particles is stronger than that of visible par-
ticles.

In general, the peak amplitudehmax is the one corresponding to the critical fre-
quency, and is given by

hn ≤ hmax∼ A

(
Mp

M⊙

)(
r

kpc

)−1( M
M⊙

)−1/2( ℓ

0.1mm

)1/2

×
{

5.0×10−22e−(d−5ℓ)/ℓ, visible source,

9.1×10−21e−(d−5ℓ)/2ℓ, shadow source.
(157)

Figure 5 illustrates the main problem with observing the KK signal from a black
string. The frequencies in the KK spectrum are bounded belowby

fn ≥ fmin ∼ 12GHz

(
ℓ

0.1mm

)−1

e−(d−5ℓ)/ℓ. (158)

This implies that the KK spectrum is usually in a higher waveband that the operation
frequencies of LIGO and LISA, assuming thatℓ . 50µm in line with current ex-
perimental tests. The way to mitigate this is to push the branes farther apart, which
reducesfmin. But if one does this, the amplitude of the signal goes down expo-
nentially. Clearly, the situation is much better for shadowparticles, which have an
intrinsically stronger GW signal. The detailed prospects of observing massive mode
signal with realistic GW detectors is discussed in (4).

11 Summary and outlook

In these lecture notes, we have introduced the black string braneworld, which is a
candidate model for a brane black hole in the Randall-Sundrum scenario. At the
background level, this model is indistinguishable from theSchwarzschild solution
to brane observers, so we need to examine the perturbations of the model to find
deviations from general relativity. We have developed the formalism necessary to
calculate the gravitational wave signals emitted from black strings perturbed away
from their equilibrium configurations. We have found that the late time nature of
these signals is somewhat independent of the nature of the mechanism which gen-
erated them, and is a long-lived superposition of discrete monochromatic massive
modes. We have discussed how these massive modes could be produced by a point
particle orbiting a black string, and estimated what their amplitude might be.

There are a number of open issues that need to be addressed in this model. So far,
we have only been able to estimate amplitudes by analyzing the scaling behaviour of
Green’s functions and using point particle sources. We needto confirm our scaling
results with direct simulations and we need to move beyond the point particle ap-
proximation to model realistic sources with size larger than ℓ. The phenomenon of
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localized black hole-black string transitions must be looked at in quantitative detail.
The possibility that such a phase transition can produce significant amounts of mas-
sive mode radiation and contribute to the gravitational wave background provides
one of the best prospects for the actual detection of a black string.
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