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functions
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if you want the explicit metric functions for 6 = 2:

Az, Az,
F=fan =520, BB = S0 n
w=w(r,y) = %(1 —y?),
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2
20 gr2 4 r3d02> +

. 92 2
sin“ 0 [ ~vyr

—dl — rod
r() ( - ¢)

r? To
(cos? 0+ 1) + BcosO, ~? =a* — B2

TS & Kerr/CFT

(a, B,75) € free parameters

above 1s 1sometric to most general
vacuum, axisymmetric, non-toridal,

extremal near-horizon metric in GR

(Kunduri and Lucietti 2009)
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['(0) = 2a(cos®0+ 1) + Beosh, ~° =a’

different choices of (o, 8, 7¢) generate
various vacuum extremal horizons

TS & Kerr/CFT

arent solution

Tomimatsu-Sato (6 =2) — 1 — 53
P

2p
Extremal Kerr 1 0

Extremal Kerr-bolt 1 ﬁ

r? r2 sin? 0 yr 2
ds? =T(0) [ ——=dt?* + 2dr? + r2do? dt — rod
s ()( 2 +T2 e 4 +F(6) - rodo

_52.

P Q 15} :

I EEEEEE———————————————E————————————

(N = nut charge and a = J/M)
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Near horizon extremal spinning (NHES)

metric

Introduction

2 2

TS spacetimes

The “dual CFT”

(o)

2
Lo r

NHES metric
Central charge
Temperature

Cardy formula

Summary

['(0) = 2a(cos®0+ 1) + Beosh, ~° =a’

. 9 2
6
ds? = T'(0) (—%d# 02y r8d92> + o (W dt — rodgzb)

o

_52.

Killing vectors generate SL(2,R) x U(1) for all (a, 3,77)

TS & Kerr/CFT

horizon area = Aa = 47mrs

horizon angular momentum = Jx = rZ/2vG

horizon mass = Ma = (1 + v%)Ja/2vG

for v = 1 we recover Kerr extremality
condition Jo = GM3 (for Kerr horizon

and ADM charges agree)
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Calculation of the central charge of candidate CFT dual to NHES
geometry proceeds as in Kerr/CFT (Strominger et al 2009):

1. find diffeomorphisms &,, preserving selected BCs on metric
fluctuations

2. use covariant formalism (Barnich and Compere 2008) to find
(Virasoro) algebra of associated charges ()¢, under Dirac
bracket

. 2
H{Qes Qe t = (Mm—n)Qc, 4¢, +7°Iam (m2 — ?) Om+n,0

3. read off the central charge ¢ = 615 /G = 127°.Ja
(recover Kerr/CFT for v = 1 and Jo = Japwm)
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The temperature of the candidate CFT found from analyzing scalar
wave equation [1® = 0 in NHES geometry

1.

change from (¢, 7, ¢) to (w4, y) coordinates such that [ is
represented by quadratic function of S (2, R) generators

conformal symmetry broken by periodic identification of
w_ ~ w_eX

Induces a finite Unruh temperature for the
SL(2,R) x SL(2,R) invariant vacuum according to
co-rotating (¢, r, ¢) observers:

TL — (27’(”}/)_1

(again v = 1 reproduces Kerr/CFT result)
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The temperature of the candidate CFT found from analyzing scalar
wave equation [1® = 0 in NHES geometry

1. change from (%, 7, ¢) to (w4, y) coordinates such that [ is
represented by quadratic function of SL(2, R) generators

2. conformal symmetry broken by periodic identification of
w_ ~ w_e*™

3. induces a finite Unruh temperature for the
SL(2,R) x SL(2,R) invariant vacuum according to
co-rotating (¢, , ¢) observers:
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1
B Cardy formula: Scpr = =7
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1
B Cardy formula: Scpr = =7

B Geometric entropy: Spg =

2
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oI =
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1 T
B Cardy formula: Scpp = —7m2cT), = —>
3 G
AA 7'('7“2
B Geometric entropy: Spj = —— = —Y
PY: OBH 10 e

B Scpr = Sgy for all members NHES class including:

1 extremal Kerr
1 extremal Kerr-Bolt

[1 Tomimatsu-Sato (sort of ...)
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for T'S spacetime, the CEF'T
central charge and temperature

reproduce gravitational entropy
of only one of the horizons

c= 1272 J(HY)
Ty, = (2ny) !

c and T, are given in terms of
quantities defined on H*
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for T'S spacetime, the CEF'T
central charge and temperature
reproduce gravitational entropy

of only one of the horizons

c= 1272 J(HY)
Ty, = (2ny) !

c and T, are given in terms of
quantities defined on H*

suggests CEF'T 1s dual to

one horizon only, not the
global spacetime
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TS spacetime is a Kerr
generalization that’s full of exotic
features = a “lesion study” of
Kerr/CFT

we have derived c and 1}, for a CF
that may be dual to some portion of
TS spacetime

CFT properties we calculated seerr
to be ignorant of ring singularity,
CTC region, etc

need to ask more probing question:
to determine if CFT is only dual to

Hi
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