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■ virtue: the RS model is automatically in excellent
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Good news

■ virtue: the RS model is automatically in excellent
agreement with GR at low energies/large distances
◆ passes solar system constraints (Garriga and Tanaka

1999). . . more on this later
◆ braneworld cosmology modifies expansion for H & 1/ℓ or
T & TeV ⇒ consistent with “low energy” cosmological
tests
■ cosmic microwave background (if we add Λ)
■ large scale structure (if we add Λ)
■ big bang nucleosynthesis

◆ even consistent with standard inflationary picture of
generation of perturbations
■ fifth dimension corrections to spectral index of order

slow-roll (Koyama et al 2006)
◆ recent numeric progress in modeling cosmological

perturbations for H & 1/ℓ
■ behaviour of scalar and tensor perturbations altered

from GR, but no observational “smoking gun”
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◆ best direct test is laboratory constraints on Newton’s law

■ as far as I am aware, these limit ℓ . 50µm
■ these are already difficult experiments

◆ test of Newton’s law probe static gravity
◆ gravitational waves probe dynamic gravity
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Overview

■ our braneworld black hole model (the black string)
■ linear perturbations of that model (generalization of Garriga

and Tanaka 1999)
■ Kaluza-Klein massive mode decomposition
■ how to recover GR (actually scalar-tensor theory)
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Remarks

ds2 = exp(−2k|y|)(−f dt2 + f−1dr2 + r2dΩ2) + dy2

f = 1 − 2GM/r

■ there is a curvature singularity at y = ∞ hidden by negative
tension brane

■ can replace Schwarzschild with
◆ Minkowski (original RS1 model)
◆ Kerr (rotating black string)

■ we reside on positive tension brane at y = 0
◆ different from RS1 — we do not try to solve hierarchy

problem
■ call the negative tension brane at y = d the “shadow” brane
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What do we perturb?
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3 types of perturbations to consider:
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Perturbing the bulk

Bulk perturbations are governed by

δGAB − 6k2δgAB = κ2
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θ(+y)TR
AB + θ(−y)TL
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Perturbing the bulk

Bulk perturbations are governed by

δGAB − 6k2δgAB = κ2
5

[

θ(+y)TR
AB + θ(−y)TL

AB

]

writing δgAB = hAB this is (c.f. Wald)

∇C∇ChAB −∇C∇AhBC −∇C∇BhAC

+ ∇A∇Bh
C
C − 8k2hAB = −2κ2

5Σ
bulk
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[
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AB

]

writing δgAB = hAB this is (c.f. Wald)

∇C∇ChAB −∇C∇AhBC −∇C∇BhAC

+ ∇A∇Bh
C
C − 8k2hAB = −2κ2

5Σ
bulk
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where

Σbulk
AB = Θ(+y)(TR
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3T

RgAB) + Θ(−y)(TL
AB − 1

3T
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RS gauge choice

Bulk EOM:

∇C∇ChAB −∇C∇AhBC −∇C∇BhAC

+ ∇A∇Bh
C
C − 8k2hAB = −2κ2

5Σ
bulk
AB

Junction conditions:

δQ±
AB =

{

2qCAq
D
B∇C∇Dξ + 1

2 [£nhAB ]

±2khAB + κ2
5

(

TAB − 1
3TqAB

)}±

0
= 0
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AB (or T bulk

AB ) and T±
AB

■ dynamical degrees of freedom: hAB and ξ±
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Bulk EOM:

∇C∇ChAB −∇C∇AhBC −∇C∇BhAC

+ ∇A∇Bh
C
C − 8k2hAB = −2κ2
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bulk
AB

Junction conditions:

δQ±
AB =

{

2qCAq
D
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2 [£nhAB ]

±2khAB + κ2
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(
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3TqAB

)}±
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■ sources Σbulk
AB (or T bulk

AB ) and T±
AB

■ dynamical degrees of freedom: hAB and ξ±
◆ 15 + 2 DOFs (too many)
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RS gauge choice

Bulk EOM:

∇C∇ChAB −∇C∇AhBC −∇C∇BhAC

+ ∇A∇Bh
C
C − 8k2hAB = −2κ2

5Σ
bulk
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Junction conditions:
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D
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2 [£nhAB ]

±2khAB + κ2
5

(

TAB − 1
3TqAB

)}±

0
= 0

■ sources Σbulk
AB (or T bulk

AB ) and T±
AB

■ dynamical degrees of freedom: hAB and ξ±
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◆ reduce number by gauge choice
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RS gauge choice
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■ ξA arbitrary gauge vector (5 components)
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conditions)
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■ we have gauge freedom to put hAB → hAB + 2∇(AξB)

■ ξA arbitrary gauge vector (5 components)
■ can use gauge freedom to enforce ∇Ah
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■ we have gauge freedom to put hAB → hAB + 2∇(AξB)
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A
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conditions)
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RS gauge choice

Bulk EOM in RS gauge:

∆̂AB
CDhCD + (GMa)2(£2

n − 4k2)hAB = −2(GMa)2κ2
5Σ

bulk
AB ,

where we have defined the operator

∆̂AB
CD = (GMa)2[qMN∇Mq

P
Nq

C
Aq

D
B∇P + 2(4)RA

C
B
D]

= (GMa)2eαAe
β
B

[

δγαδ
δ
β∇ρ∇ρ + 2Rα

γ
β
δ
]

q
eCγ e

D
δ

= (GM)2eαAe
β
B

[

δγαδ
δ
β∇ρ∇ρ + 2Rα

γ
β
δ
]

g
eCγ e

D
δ
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RS gauge choice

Bulk EOM in RS gauge:

∆̂AB
CDhCD + (GMa)2(£2

n − 4k2)hAB = −2(GMa)2κ2
5Σ

bulk
AB ,

where we have defined the operator

∆̂AB
CD = (GMa)2[qMN∇Mq

P
Nq

C
Aq

D
B∇P + 2(4)RA

C
B
D]

= (GMa)2eαAe
β
B

[

δγαδ
δ
β∇ρ∇ρ + 2Rα

γ
β
δ
]

q
eCγ e

D
δ

= (GM)2eαAe
β
B

[

δγαδ
δ
β∇ρ∇ρ + 2Rα

γ
β
δ
]

g
eCγ e

D
δ

■ curvature tensor on Σy:
(4)RMNPQ = qAMq

B
Nq

C
P q

D
QRABCD + 2KM [PKQ]N
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where we have defined the operator
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D
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■ curvature tensor on Σy:
(4)RMNPQ = qAMq

B
Nq

C
P q

D
QRABCD + 2KM [PKQ]N

■ induced metric on Σy: qαβ = a2gαβ where gαβ is
Schwarzschild

■ [· · · ]q or g means calculate with qαβ or gαβ
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RS gauge consequences

Bulk EOM:

∆̂AB
CDhCD + (GMa)2(£2

n − 4k2)hAB = −2(GMa)2κ2
5Σ

bulk
AB

Junction conditions:

δQ±
AB =

{

2qCAq
D
B∇C∇Dξ + 1

2 [£nhAB ]

±2khAB + κ2
5

(

TAB − 1
3TqAB

)}±

0
= 0

http://www.tech.port.ac.uk/staffweb/seahras


Randall-Sundrum scenarios

A braneworld black hole model

Linear perturbations

● What do we perturb?

● Perturbing the bulk

● Brane bending

● Perturbed junction conditions

● RS gauge choice

● RS gauge consequences

● Streamlined bulk EOM

● Summary

The massive modes

Recovering GR

Angular decomposition

Gregory-Laflamme instability

Source-free GWs

GWs from point sources

KK scaling formulae

Detection scenarios

Final comments

Sanjeev S. Seahra; 19 April, 2007 Gravitational waves in braneworld scenarios - p. 18/68

RS gauge consequences

Bulk EOM:

∆̂AB
CDhCD + (GMa)2(£2

n − 4k2)hAB = −2(GMa)2κ2
5Σ

bulk
AB

Junction conditions:

δQ±
AB =

{

2qCAq
D
B∇C∇Dξ + 1

2 [£nhAB ]

±2khAB + κ2
5

(

TAB − 1
3TqAB

)}±

0
= 0

■ LHS of bulk EOM manifestly traceless and orthogonal to y

Σbulk
AB = eαAe

β
BΣbulk

αβ qαβΣbulk
αβ = 0

RS gauge not general!
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■ LHS of bulk EOM manifestly traceless and orthogonal to y

Σbulk
AB = eαAe

β
BΣbulk

αβ qαβΣbulk
αβ = 0

RS gauge not general!
◆ just like radiation gauge in GR (see Wald)

http://www.tech.port.ac.uk/staffweb/seahras


Randall-Sundrum scenarios

A braneworld black hole model

Linear perturbations

● What do we perturb?

● Perturbing the bulk

● Brane bending

● Perturbed junction conditions

● RS gauge choice

● RS gauge consequences

● Streamlined bulk EOM

● Summary

The massive modes

Recovering GR

Angular decomposition

Gregory-Laflamme instability

Source-free GWs

GWs from point sources

KK scaling formulae

Detection scenarios

Final comments

Sanjeev S. Seahra; 19 April, 2007 Gravitational waves in braneworld scenarios - p. 18/68

RS gauge consequences

Bulk EOM:

∆̂AB
CDhCD + (GMa)2(£2

n − 4k2)hAB = −2(GMa)2κ2
5Σ

bulk
AB

Junction conditions:

δQ±
AB =

{

2qCAq
D
B∇C∇Dξ + 1

2 [£nhAB ]

±2khAB + κ2
5

(

TAB − 1
3TqAB

)}±

0
= 0

■ LHS of bulk EOM manifestly traceless and orthogonal to y

Σbulk
AB = eαAe

β
BΣbulk

αβ qαβΣbulk
αβ = 0

RS gauge not general!
◆ just like radiation gauge in GR (see Wald)

■ trace of junction conditions yields an EOM for ξ±

qAB∇A∇Bξ
± = 1

6κ
2
5T

±
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RS gauge consequences

Principal equations in RS gauge:

∆̂AB
CDhCD + (GMa)2(£2

n − 4k2)hAB = −2(GMa)2κ2
5Σ

bulk
AB

hAA = gABΣbulk
AB = 0 = nAhAB = nAΣbulk

AB = ∇Ah
A
B

{

2qCAq
D
B∇C∇Dξ + 1

2 [£nhAB ] ± 2khAB + κ2
5

(

TAB − 1
3TqAB

)}±

0
= 0
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± = 1

6κ
2
5T
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RS gauge consequences

Principal equations in RS gauge:

∆̂AB
CDhCD + (GMa)2(£2

n − 4k2)hAB = −2(GMa)2κ2
5Σ

bulk
AB

hAA = gABΣbulk
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A
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D
B∇C∇Dξ + 1

2 [£nhAB ] ± 2khAB + κ2
5

(

TAB − 1
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)}±
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= 0

qAB∇A∇Bξ
± = 1

6κ
2
5T

±

■ Generalization of seminal Garriga & Tanaka (1999) result to
bulk with CABCD 6= 0 and arbitrary bulk coordinates
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RS gauge consequences

Principal equations in RS gauge:

∆̂AB
CDhCD + (GMa)2(£2

n − 4k2)hAB = −2(GMa)2κ2
5Σ

bulk
AB

hAA = gABΣbulk
AB = 0 = nAhAB = nAΣbulk

AB = ∇Ah
A
B

{

2qCAq
D
B∇C∇Dξ + 1

2 [£nhAB ] ± 2khAB + κ2
5

(

TAB − 1
3TqAB

)}±

0
= 0

qAB∇A∇Bξ
± = 1

6κ
2
5T

±

■ Generalization of seminal Garriga & Tanaka (1999) result to
bulk with CABCD 6= 0 and arbitrary bulk coordinates

■ we will set Σbulk
AB = T bulk

AB = 0 from now on
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Streamlined bulk equation of motion

■ can incorporate junction conditions into bulk EOM by
introducing distributional sources

∆̂AB
CDhCD − µ̂2hAB = −2(GMa)2κ2

5

∑

ǫ=±

δ(y − yǫ)Σ
ǫ
AB
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Streamlined bulk equation of motion

■ can incorporate junction conditions into bulk EOM by
introducing distributional sources

∆̂AB
CDhCD − µ̂2hAB = −2(GMa)2κ2

5

∑

ǫ=±

δ(y − yǫ)Σ
ǫ
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■ the brane sources are
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Streamlined bulk equation of motion

■ can incorporate junction conditions into bulk EOM by
introducing distributional sources

∆̂AB
CDhCD − µ̂2hAB = −2(GMa)2κ2

5

∑
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δ(y − yǫ)Σ
ǫ
AB

■ the brane sources are

Σ±
AB =

(

T±
AB − 1

3T
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)

+
2

κ2
5

qCAq
D
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■ the µ̂ operator is

µ̂2 = −(GMa)2

[

£
2
n +

2κ2
5

3

∑

ǫ=±

λǫδ(y − yǫ) − 4k2
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Streamlined bulk equation of motion

■ can incorporate junction conditions into bulk EOM by
introducing distributional sources

∆̂AB
CDhCD − µ̂2hAB = −2(GMa)2κ2

5

∑

ǫ=±

δ(y − yǫ)Σ
ǫ
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■ the brane sources are

Σ±
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(

T±
AB − 1

3T
±qAB

)

+
2

κ2
5

qCAq
D
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±

■ the µ̂ operator is

µ̂2 = −(GMa)2

[

£
2
n +

2κ2
5

3

∑

ǫ=±

λǫδ(y − yǫ) − 4k2

]

■ recover previous formulae by integrating over small y interval
across each brane
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The massive modes
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Kaluza-Klein decomposition

∆̂AB
CDhCD − µ̂2hAB = −2(GMa)2κ2

5

∑

ǫ=±

δ(y − yǫ)Σ
ǫ
AB
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Kaluza-Klein decomposition

∆̂AB
CDhCD − µ̂2hAB = −2(GMa)2κ2

5

∑

ǫ=±

δ(y − yǫ)Σ
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■ ∆̂AB
CD is a differential operator tangent to the brane
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Kaluza-Klein decomposition

∆̂AB
CDhCD − µ̂2hAB = −2(GMa)2κ2

5

∑

ǫ=±

δ(y − yǫ)Σ
ǫ
AB

■ ∆̂AB
CD is a differential operator tangent to the brane

■ µ̂ is a differential operator orthogonal to the brane
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Kaluza-Klein decomposition

∆̂AB
CDhCD − µ̂2hAB = −2(GMa)2κ2

5

∑

ǫ=±

δ(y − yǫ)Σ
ǫ
AB

■ ∆̂AB
CD is a differential operator tangent to the brane

■ µ̂ is a differential operator orthogonal to the brane

■ they formally commute [∆̂AB
CD, µ̂2]hCD = 0
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Kaluza-Klein decomposition

∆̂AB
CDhCD − µ̂2hAB = −2(GMa)2κ2

5

∑

ǫ=±

δ(y − yǫ)Σ
ǫ
AB

■ ∆̂AB
CD is a differential operator tangent to the brane

■ µ̂ is a differential operator orthogonal to the brane

■ they formally commute [∆̂AB
CD, µ̂2]hCD = 0

■ hence we can seek a solution by separation of variables

hAB(zα, y) = Z(y)h̃AB(zα) µ̂2Z(y) = µ2Z(y)

i.e.: Z(y) is a eigenfunction of µ̂2 with eigenvalue µ2
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Even parity eigenfunctions

■ if we assume that Z = Z(y) is reflection symmetric about
each brane, the eigenvalue problem reduces to

m2Z(y) = −a2(y)

[

∂2
y + 4k

∑

ǫ=±

ǫδ(y − yǫ) − 4k2

]

Z(y),

where µ = GMm
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Even parity eigenfunctions

■ if we assume that Z = Z(y) is reflection symmetric about
each brane, the eigenvalue problem reduces to

m2Z(y) = −a2(y)

[

∂2
y + 4k

∑

ǫ=±

ǫδ(y − yǫ) − 4k2

]

Z(y),

where µ = GMm

■ transform into Schrödinger form with x = ℓeky and
ψ = x1/2Z
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Even parity eigenfunctions

■ there is a discrete spectrum of solutions labeled by the
positive integers n = 1, 2, 3 . . .:

Zn(y) = α−1
n [Y1(mnℓ)J2(mnℓe

k|y|) − J1(mnℓ)Y2(mnℓe
k|y|)]
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Even parity eigenfunctions

■ there is a discrete spectrum of solutions labeled by the
positive integers n = 1, 2, 3 . . .:

Zn(y) = α−1
n [Y1(mnℓ)J2(mnℓe

k|y|) − J1(mnℓ)Y2(mnℓe
k|y|)]

■ the αn’s are constants and mn = µn/GM is the nth solution
of

Y1(mnℓ)J1(mnℓe
kd) = J1(mnℓ)Y1(mnℓe

kd)
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Even parity eigenfunctions

■ there is a discrete spectrum of solutions labeled by the
positive integers n = 1, 2, 3 . . .:

Zn(y) = α−1
n [Y1(mnℓ)J2(mnℓe

k|y|) − J1(mnℓ)Y2(mnℓe
k|y|)]

■ the αn’s are constants and mn = µn/GM is the nth solution
of

Y1(mnℓ)J1(mnℓe
kd) = J1(mnℓ)Y1(mnℓe

kd)

■ the αn constants are determined from demanding that {Zn}
forms an orthonormal set

δmn =

∫ d

−d

dy a−2(y)Zm(y)Zn(y)
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Even parity eigenfunctions

■ there is a discrete spectrum of solutions labeled by the
positive integers n = 1, 2, 3 . . .:

Zn(y) = α−1
n [Y1(mnℓ)J2(mnℓe

k|y|) − J1(mnℓ)Y2(mnℓe
k|y|)]

■ the αn’s are constants and mn = µn/GM is the nth solution
of

Y1(mnℓ)J1(mnℓe
kd) = J1(mnℓ)Y1(mnℓe

kd)

■ the αn constants are determined from demanding that {Zn}
forms an orthonormal set

δmn =

∫ d

−d

dy a−2(y)Zm(y)Zn(y)

■ there is also a solution corresponding to m0 = µ0 = 0, which
is known as the zero-mode:

Z0(y) = α−1
0 e−2k|y|, α0 =

√
ℓ(1 − e−2kd)1/2.
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Odd parity eigenfunctions

■ there are also odd parity harmonics satisfying

m2Z(y) = −a2(y)(∂2
y − 4k2)Z(y) 0 = Z(y+) = Z(y−)
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Odd parity eigenfunctions

■ there are also odd parity harmonics satisfying

m2Z(y) = −a2(y)(∂2
y − 4k2)Z(y) 0 = Z(y+) = Z(y−)

■ solutions are

Zn+ 1

2

(y) = α−1
n+ 1

2

[Y2(mn+ 1

2

ℓ)J2(mn+ 1

2

ℓek|y|)

− J2(mn+ 1

2

ℓ)Y2(mn+ 1

2

ℓek|y|)]
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Odd parity eigenfunctions

■ there are also odd parity harmonics satisfying

m2Z(y) = −a2(y)(∂2
y − 4k2)Z(y) 0 = Z(y+) = Z(y−)

■ solutions are

Zn+ 1

2

(y) = α−1
n+ 1

2

[Y2(mn+ 1

2

ℓ)J2(mn+ 1

2

ℓek|y|)

− J2(mn+ 1

2

ℓ)Y2(mn+ 1

2

ℓek|y|)]

■ the mass eigenvalues are now the solutions of

Y2(mn+ 1

2

ℓ)J2(mn+ 1

2

ℓekd) = J2(mn+ 1

2

ℓ)Y2(mn+ 1

2

ℓekd)
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Odd parity eigenfunctions

■ there are also odd parity harmonics satisfying

m2Z(y) = −a2(y)(∂2
y − 4k2)Z(y) 0 = Z(y+) = Z(y−)

■ solutions are

Zn+ 1

2

(y) = α−1
n+ 1

2

[Y2(mn+ 1

2

ℓ)J2(mn+ 1

2

ℓek|y|)

− J2(mn+ 1

2

ℓ)Y2(mn+ 1

2

ℓek|y|)]

■ the mass eigenvalues are now the solutions of

Y2(mn+ 1

2

ℓ)J2(mn+ 1

2

ℓekd) = J2(mn+ 1

2

ℓ)Y2(mn+ 1

2

ℓekd)

■ we can verify

m1 < m3/2 < m2 < m5/2 < · · ·
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Source-free solution

■ in the absence of sources, the general solution to the bulk
EOM is

hAB = eαAe
β
B

∞
∑

n=0

[

AnZnh
(n)
αβ + Bn+3/2Zn+3/2h

(n+3/2)
αβ

]
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Source-free solution

■ in the absence of sources, the general solution to the bulk
EOM is

hAB = eαAe
β
B

∞
∑

n=0

[

AnZnh
(n)
αβ + Bn+3/2Zn+3/2h

(n+3/2)
αβ

]

■ the contribution of the odd modes to the perturbed brane
metric vanishes at linear order
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Source-free solution

■ in the absence of sources, the general solution to the bulk
EOM is

hAB = eαAe
β
B

∞
∑

n=0

[

AnZnh
(n)
αβ + Bn+3/2Zn+3/2h

(n+3/2)
αβ

]

■ the contribution of the odd modes to the perturbed brane
metric vanishes at linear order

■ each of the h(n)
αβ behaves like a massive graviton on the

Schwarzschild background

∇γ∇γh
(n)
αβ + 2Rα

γ
β
δh

(n)
γδ −m2

nh
(n)
αβ = 0

http://www.tech.port.ac.uk/staffweb/seahras


Randall-Sundrum scenarios

A braneworld black hole model

Linear perturbations

The massive modes

● Kaluza-Klein decomposition

● Even parity eigenfunctions

● Odd parity eigenfunctions

● Source-free solution

● Graviton in a box

Recovering GR

Angular decomposition

Gregory-Laflamme instability

Source-free GWs

GWs from point sources

KK scaling formulae

Detection scenarios

Final comments

Sanjeev S. Seahra; 19 April, 2007 Gravitational waves in braneworld scenarios - p. 25/68

Source-free solution

■ in the absence of sources, the general solution to the bulk
EOM is

hAB = eαAe
β
B

∞
∑

n=0

[

AnZnh
(n)
αβ + Bn+3/2Zn+3/2h

(n+3/2)
αβ

]

■ the contribution of the odd modes to the perturbed brane
metric vanishes at linear order

■ each of the h(n)
αβ behaves like a massive graviton on the

Schwarzschild background

∇γ∇γh
(n)
αβ + 2Rα

γ
β
δh

(n)
γδ −m2

nh
(n)
αβ = 0

■ since m0 = 0, the zero-mode behaves exactly like massless
graviton in GR
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Graviton in a box
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Graviton in a box

…5D graviton is like a
wave trapped in a box with

discrete modes of propagation

profile of bulk modes
along extra dimension

(only showing
even modes)
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zero-mode behaves exactly
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discrete modes of propagation

{
higher-order

“Kaluza-Klein”
modes act as

coupled massive
spin-0, spin-1 and

spin-2 fields

e
ff
e

c
ti
v
e

 4
D

 m
a

s
s

(only showing
even modes)

http://www.tech.port.ac.uk/staffweb/seahras


Randall-Sundrum scenarios

A braneworld black hole model

Linear perturbations

The massive modes

● Kaluza-Klein decomposition

● Even parity eigenfunctions

● Odd parity eigenfunctions

● Source-free solution

● Graviton in a box

Recovering GR

Angular decomposition

Gregory-Laflamme instability

Source-free GWs

GWs from point sources

KK scaling formulae

Detection scenarios

Final comments

Sanjeev S. Seahra; 19 April, 2007 Gravitational waves in braneworld scenarios - p. 26/68

Graviton in a box

modes are labeled by
number of zeros

in-between branes

profile of bulk modes
along extra dimension

zero-mode behaves exactly
like 4D massless (spin-2) graviton

…5D graviton is like a
wave trapped in a box with

discrete modes of propagation
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Recovering GR
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Zero-mode truncation

■ consider a solar system like situation:
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Zero-mode truncation

■ consider a solar system like situation:
◆ weak matter source on visible brane
◆ no matter in the bulk or on the shadow brane

http://www.tech.port.ac.uk/staffweb/seahras


Randall-Sundrum scenarios

A braneworld black hole model

Linear perturbations

The massive modes

Recovering GR

● Zero-mode truncation

● Some approximations

● Physical brane metric

● Brans-Dicke theory

Angular decomposition

Gregory-Laflamme instability

Source-free GWs

GWs from point sources

KK scaling formulae

Detection scenarios

Final comments

Sanjeev S. Seahra; 19 April, 2007 Gravitational waves in braneworld scenarios - p. 28/68

Zero-mode truncation

■ consider a solar system like situation:
◆ weak matter source on visible brane
◆ no matter in the bulk or on the shadow brane

■ the even KK modes satisfy the following completeness
relation

δ(y − y±) =

∞
∑

n=0

a−2Zn(y)Zn(y±)
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Zero-mode truncation

■ consider a solar system like situation:
◆ weak matter source on visible brane
◆ no matter in the bulk or on the shadow brane

■ the even KK modes satisfy the following completeness
relation

δ(y − y±) =

∞
∑

n=0

a−2Zn(y)Zn(y±)

■ can use this to re-write bulk equation of motion

∆̂AB
CDhCD − µ̂2hAB = −2(GM)2κ2

5Σ
+
AB

∞
∑

n=0

Zn(y+)Zn(y)
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Zero-mode truncation

■ consider a solar system like situation:
◆ weak matter source on visible brane
◆ no matter in the bulk or on the shadow brane

■ the even KK modes satisfy the following completeness
relation

δ(y − y±) =

∞
∑

n=0

a−2Zn(y)Zn(y±)

■ can use this to re-write bulk equation of motion

∆̂AB
CDhCD − µ̂2hAB = −2(GM)2κ2

5Σ
+
AB

∞
∑

n=0

Zn(y+)Zn(y)

■ zero-mode truncation: retain only the first term in the
series
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Some eigenfunction approximations

■ zero-mode truncation based on (physical) assumption that
the Z0 contribution to hAB is much larger than the Zn parts
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Some eigenfunction approximations

■ zero-mode truncation based on (physical) assumption that
the Z0 contribution to hAB is much larger than the Zn parts

■ recall that

Zn(y) = α−1
n [Y1(mnℓ)J2(mnℓe

k|y|) − J1(mnℓ)Y2(mnℓe
k|y|)]

Y1(mnℓ)J1(mnℓe
kd) = J1(mnℓ)Y1(mnℓe

kd).

δmn =

∫ d

−d

dy a−2(y)Zm(y)Zn(y)
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Some eigenfunction approximations

■ zero-mode truncation based on (physical) assumption that
the Z0 contribution to hAB is much larger than the Zn parts

■ recall that

Zn(y) = α−1
n [Y1(mnℓ)J2(mnℓe

k|y|) − J1(mnℓ)Y2(mnℓe
k|y|)]

Y1(mnℓ)J1(mnℓe
kd) = J1(mnℓ)Y1(mnℓe

kd).

δmn =

∫ d

−d

dy a−2(y)Zm(y)Zn(y)

■ in approximation ekd ≫ 1, we can solve second and third
equations for mn and αn; yielding

Zn(0) =
√
kO(e−kd/2) ≪ Z0(0) =

√
kO(1)
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Some eigenfunction approximations

■ zero-mode truncation based on (physical) assumption that
the Z0 contribution to hAB is much larger than the Zn parts

■ recall that

Zn(y) = α−1
n [Y1(mnℓ)J2(mnℓe

k|y|) − J1(mnℓ)Y2(mnℓe
k|y|)]

Y1(mnℓ)J1(mnℓe
kd) = J1(mnℓ)Y1(mnℓe

kd).

δmn =

∫ d

−d

dy a−2(y)Zm(y)Zn(y)

■ in approximation ekd ≫ 1, we can solve second and third
equations for mn and αn; yielding

Zn(0) =
√
kO(e−kd/2) ≪ Z0(0) =

√
kO(1)

■ this justifies zero-mode truncation (sort-of)
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Physical brane metric

■ under the zero-mode truncation hAB ∼ Z0(y)e
α
Ae

β
Bhαβ(z

ρ)
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Physical brane metric

■ under the zero-mode truncation hAB ∼ Z0(y)e
α
Ae

β
Bhαβ(z

ρ)

■ induced metric at y = y+ satisfies

∆̂AB
CDh+

CD = −2(GM)2κ2
5Σ

+
ABZ

2
0 (y+)

(no extra dimensional content)
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Physical brane metric

■ under the zero-mode truncation hAB ∼ Z0(y)e
α
Ae

β
Bhαβ(z

ρ)

■ induced metric at y = y+ satisfies

∆̂AB
CDh+

CD = −2(GM)2κ2
5Σ

+
ABZ

2
0 (y+)

(no extra dimensional content)
■ however, metric at perturbed brane position y = y+ − ξ+ is

q+AB = [gAB − nAnB ]+
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Physical brane metric

■ under the zero-mode truncation hAB ∼ Z0(y)e
α
Ae

β
Bhαβ(z

ρ)

■ induced metric at y = y+ satisfies

∆̂AB
CDh+

CD = −2(GM)2κ2
5Σ

+
ABZ

2
0 (y+)

(no extra dimensional content)
■ however, metric at perturbed brane position y = y+ − ξ+ is

q+AB = [gAB − nAnB ]+

■ similar to our previous calculation of perturbed junction
conditions, we find

δq+AB ≡ h̄+
AB =

{

δqAB
δΦ

δΦ +
δqAB
δnC

δnC +
δqAB
δgCD

δgCD

}+

0

= h+
AB + 2kξ+q+AB − (nA∇B + nB∇A)ξ+
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Brans-Dicke theory

■ define

h̄+
αβ = eAαe

B
β h̄

+
AB T+

αβ = eAαe
B
β T

+
AB Z2

+ = Z2
0 (y+) =

k

1 − e−2kd
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Brans-Dicke theory

■ define

h̄+
αβ = eAαe

B
β h̄

+
AB T+

αβ = eAαe
B
β T

+
AB Z2

+ = Z2
0 (y+) =

k

1 − e−2kd

■ perturbation to physical brane metric not TT

∇γ h̄+
γα = 2k∇αξ

+ gαβh̄+
αβ = 8kξ+
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Brans-Dicke theory

■ define

h̄+
αβ = eAαe

B
β h̄

+
AB T+

αβ = eAαe
B
β T

+
AB Z2

+ = Z2
0 (y+) =

k

1 − e−2kd

■ perturbation to physical brane metric not TT

∇γ h̄+
γα = 2k∇αξ

+ gαβh̄+
αβ = 8kξ+

■ equation of motion for h̄+
αβ :

∇γ∇γ h̄αβ + ∇α∇βh̄
γ
γ −∇γ∇αh̄βγ −∇γ∇βh̄αγ =

−2Z2
+κ

2
5

[

Tαβ − 1

3

(

1 +
k

2Z2
+

)

T γγgαβ

]

+(6k−4Z2
+)∇α∇βξ
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Brans-Dicke theory

■ still have the gauge freedom

h̄αβ → h̄αβ + ∇αηβ + ∇βηα
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Brans-Dicke theory

■ still have the gauge freedom

h̄αβ → h̄αβ + ∇αηβ + ∇βηα

■ use this to enforce

∇βh̄
β
α − 1

2∇αh̄
β
β = (2Z2

+ − 3k)∇αξ
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Brans-Dicke theory

■ still have the gauge freedom

h̄αβ → h̄αβ + ∇αηβ + ∇βηα

■ use this to enforce

∇βh̄
β
α − 1

2∇αh̄
β
β = (2Z2

+ − 3k)∇αξ

■ in this gauge h̄αβ behaves as in Brans-Dicke theory

∇γ∇γ h̄αβ+2Rα
γ
β
δh̄γδ = −16πG

[

Tαβ −
(

1 + ωBD

3 + 2ωBD

)

T γγgαβ

]
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Brans-Dicke theory

■ still have the gauge freedom

h̄αβ → h̄αβ + ∇αηβ + ∇βηα

■ use this to enforce

∇βh̄
β
α − 1

2∇αh̄
β
β = (2Z2

+ − 3k)∇αξ

■ in this gauge h̄αβ behaves as in Brans-Dicke theory

∇γ∇γ h̄αβ+2Rα
γ
β
δh̄γδ = −16πG

[

Tαβ −
(

1 + ωBD

3 + 2ωBD

)

T γγgαβ

]

■ Brans-Dicke parameter and Newton constant related to
brane separation

ωBD =
3

2
(e2d/ℓ − 1) G =

κ2
5

8πℓ(1 − e−2d/ℓ)
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Brans-Dicke theory

∇γ∇γ h̄αβ + 2Rα
γ
β
δh̄γδ = −16πG

[

Tαβ −
(

1 + ωBD

3 + 2ωBD

)

T γγgαβ

]

ωBD =
3

2
(e2d/ℓ − 1)
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Brans-Dicke theory

∇γ∇γ h̄αβ + 2Rα
γ
β
δh̄γδ = −16πG

[

Tαβ −
(

1 + ωBD

3 + 2ωBD

)

T γγgαβ

]

ωBD =
3

2
(e2d/ℓ − 1)

■ infinite brane separation means ωBD = ∞ and we recover
GR exactly

http://www.tech.port.ac.uk/staffweb/seahras


Randall-Sundrum scenarios

A braneworld black hole model

Linear perturbations

The massive modes

Recovering GR

● Zero-mode truncation

● Some approximations

● Physical brane metric

● Brans-Dicke theory

Angular decomposition

Gregory-Laflamme instability

Source-free GWs

GWs from point sources

KK scaling formulae

Detection scenarios

Final comments

Sanjeev S. Seahra; 19 April, 2007 Gravitational waves in braneworld scenarios - p. 31/68

Brans-Dicke theory

∇γ∇γ h̄αβ + 2Rα
γ
β
δh̄γδ = −16πG

[

Tαβ −
(

1 + ωBD

3 + 2ωBD

)

T γγgαβ

]

ωBD =
3

2
(e2d/ℓ − 1)

■ infinite brane separation means ωBD = ∞ and we recover
GR exactly

■ solar system constraint

ωBD & 4 × 104 ⇒ d/ℓ & 5
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Brans-Dicke theory

∇γ∇γ h̄αβ + 2Rα
γ
β
δh̄γδ = −16πG

[

Tαβ −
(

1 + ωBD

3 + 2ωBD

)

T γγgαβ

]

ωBD =
3

2
(e2d/ℓ − 1)

■ infinite brane separation means ωBD = ∞ and we recover
GR exactly

■ solar system constraint

ωBD & 4 × 104 ⇒ d/ℓ & 5

■ we need to adopt this limit on brane separation to model
black holes in the nearby universe as black strings
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Angular harmonic decomposition
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Tensor harmonics

Let us move beyond the zero mode approximation...
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Tensor harmonics

Let us move beyond the zero mode approximation...

don’t throw away any terms
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Tensor harmonics

(see also Kokkotas lecture)
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Tensor harmonics

2-sphere

(see also Kokkotas lecture)
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Separation of variables:

10 DOFs
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Tensor harmonics

10 DOFs

Randall-Sundrum gauge choice

Separation of variables:

spherical
harmonics

“standard” tensor spherical harmonics

...focus on RS gauge
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Tensor harmonics

10 DOFs

Randall-Sundrum gauge choice

Separation of variables:

spherical
harmonics

dynamics of these expansion coefficients determined by
linearized field equations... polar and axial sets are decoupled

...focus on RS gauge
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Master wave equations

∇γ∇γh
(nlm)
αβ + 2Rα

γ
β
δh

(nlm)
γδ −m2

nh
(nlm)
αβ = sources

h
(nlm)
αβ =

7
∑

i=1

Pnilm(t, r)P
(ilm)
αβ (Ω) +

3
∑

j=1

Anj
lm(t, r)A

(ilm)
αβ (Ω)

■ for any given (nlm), EOMs imply that some of the Pnilm and
Anj
lm are redundant
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∑
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Anj
lm(t, r)A

(ilm)
αβ (Ω)

■ for any given (nlm), EOMs imply that some of the Pnilm and
Anj
lm are redundant

■ as in 4D black hole perturbation theory, can express h(nlm)

in term of master variables {ψ}
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Master wave equations

∇γ∇γh
(nlm)
αβ + 2Rα

γ
β
δh

(nlm)
γδ −m2

nh
(nlm)
αβ = sources

h
(nlm)
αβ =

7
∑

i=1

Pnilm(t, r)P
(ilm)
αβ (Ω) +

3
∑

j=1

Anj
lm(t, r)A

(ilm)
αβ (Ω)

■ for any given (nlm), EOMs imply that some of the Pnilm and
Anj
lm are redundant

■ as in 4D black hole perturbation theory, can express h(nlm)

in term of master variables {ψ}
■ general idea is to solve dynamical equations for master

variables {ψ} and then obtain metric perturbation h(nlm) by
algebra/differentiation/quadrature
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Master wave equations

∇γ∇γh
(nlm)
αβ + 2Rα

γ
β
δh

(nlm)
γδ −m2

nh
(nlm)
αβ = sources

h
(nlm)
αβ =

7
∑

i=1

Pnilm(t, r)P
(ilm)
αβ (Ω) +

3
∑

j=1

Anj
lm(t, r)A

(ilm)
αβ (Ω)

■ for any given (nlm), EOMs imply that some of the Pnilm and
Anj
lm are redundant

■ as in 4D black hole perturbation theory, can express h(nlm)

in term of master variables {ψ}
■ general idea is to solve dynamical equations for master

variables {ψ} and then obtain metric perturbation h(nlm) by
algebra/differentiation/quadrature

■ actual process of finding master variables tedious and often
involves trial and error
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Master wave equations

■ essential DOFs are described by (vector-valued) master
variables Ψ

a
nlm = Ψ

a
nlm(τ, x), which satisfy wave equations

[∂2
τ − ∂2

x + V
a
l (x,mn)]Ψ

a
nlm = source(matter, ξ±)
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Master wave equations

■ essential DOFs are described by (vector-valued) master
variables Ψ

a
nlm = Ψ

a
nlm(τ, x), which satisfy wave equations

[∂2
τ − ∂2

x + V
a
l (x,mn)]Ψ

a
nlm = source(matter, ξ±)

◆ τ = t/GM and x = r/GM + 2 ln(r/2GM − 1)
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Master wave equations

■ essential DOFs are described by (vector-valued) master
variables Ψ

a
nlm = Ψ

a
nlm(τ, x), which satisfy wave equations

[∂2
τ − ∂2

x + V
a
l (x,mn)]Ψ

a
nlm = source(matter, ξ±)

◆ τ = t/GM and x = r/GM + 2 ln(r/2GM − 1)
◆ V

a
l is a square matrix

http://www.tech.port.ac.uk/staffweb/seahras


Randall-Sundrum scenarios

A braneworld black hole model

Linear perturbations

The massive modes

Recovering GR

Angular decomposition

● Tensor harmonics

● Master wave equations

● Regge-Wheeler gauge

● Example: axial perturbations

Gregory-Laflamme instability

Source-free GWs

GWs from point sources

KK scaling formulae

Detection scenarios

Final comments

Sanjeev S. Seahra; 19 April, 2007 Gravitational waves in braneworld scenarios - p. 34/68

Master wave equations

■ essential DOFs are described by (vector-valued) master
variables Ψ

a
nlm = Ψ

a
nlm(τ, x), which satisfy wave equations

[∂2
τ − ∂2

x + V
a
l (x,mn)]Ψ

a
nlm = source(matter, ξ±)

◆ τ = t/GM and x = r/GM + 2 ln(r/2GM − 1)
◆ V

a
l is a square matrix

◆ a = (polar, axial)
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Master wave equations

■ essential DOFs are described by (vector-valued) master
variables Ψ

a
nlm = Ψ

a
nlm(τ, x), which satisfy wave equations

[∂2
τ − ∂2

x + V
a
l (x,mn)]Ψ

a
nlm = source(matter, ξ±)

◆ τ = t/GM and x = r/GM + 2 ln(r/2GM − 1)
◆ V

a
l is a square matrix

◆ a = (polar, axial)
◆ number of radiative DOFs in zero-mode sector:

n = 0 polar axial

l = 0 n/a n/a
l = 1 n/a n/a
l ≥ 2 dimΨ

a
nlm = 1 dimΨ

a
nlm = 1
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Master wave equations

■ essential DOFs are described by (vector-valued) master
variables Ψ

a
nlm = Ψ

a
nlm(τ, x), which satisfy wave equations

[∂2
τ − ∂2

x + V
a
l (x,mn)]Ψ

a
nlm = source(matter, ξ±)

◆ τ = t/GM and x = r/GM + 2 ln(r/2GM − 1)
◆ V

a
l is a square matrix

◆ a = (polar, axial)
◆ number of radiative DOFs in massive mode sector:

n ≥ 1 polar axial

l = 0 dimΨ
a
nlm = 1 n/a

l = 1 dimΨ
a
nlm = 2 dimΨ

a
nlm = 1

l ≥ 2 dimΨ
a
nlm = 3 dimΨ

a
nlm = 2

http://www.tech.port.ac.uk/staffweb/seahras


Randall-Sundrum scenarios

A braneworld black hole model

Linear perturbations

The massive modes

Recovering GR

Angular decomposition

● Tensor harmonics

● Master wave equations

● Regge-Wheeler gauge

● Example: axial perturbations

Gregory-Laflamme instability

Source-free GWs

GWs from point sources

KK scaling formulae

Detection scenarios

Final comments

Sanjeev S. Seahra; 19 April, 2007 Gravitational waves in braneworld scenarios - p. 35/68

Regge-Wheeler gauge

■ we don’t always have to use the RS gauge with nAhAB = 0
(i.e. hty = hry = · · · = hyy = 0)
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Regge-Wheeler gauge

■ we don’t always have to use the RS gauge with nAhAB = 0
(i.e. hty = hry = · · · = hyy = 0)

■ in the general hAB =
∑

nlm Zn(y)h
(nlm)
AB with

h
(nlm)
AB =

11
∑

i=1

Pnilm(t, r)P
(ilm)
AB (Ω) +

4
∑

j=1

Anj
lm(t, r)A

(ilm)
AB (Ω)
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Regge-Wheeler gauge

■ we don’t always have to use the RS gauge with nAhAB = 0
(i.e. hty = hry = · · · = hyy = 0)

■ in the general hAB =
∑

nlm Zn(y)h
(nlm)
AB with

h
(nlm)
AB =

11
∑

i=1

Pnilm(t, r)P
(ilm)
AB (Ω) +

4
∑

j=1

Anj
lm(t, r)A

(ilm)
AB (Ω)

■ P
(ilm)
AB and A

(ilm)
AB are the natural 5D generalizations of the

4D tensor harmonics
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Regge-Wheeler gauge

■ we don’t always have to use the RS gauge with nAhAB = 0
(i.e. hty = hry = · · · = hyy = 0)

■ in the general hAB =
∑

nlm Zn(y)h
(nlm)
AB with

h
(nlm)
AB =

11
∑

i=1

Pnilm(t, r)P
(ilm)
AB (Ω) +

4
∑

j=1

Anj
lm(t, r)A

(ilm)
AB (Ω)

■ P
(ilm)
AB and A

(ilm)
AB are the natural 5D generalizations of the

4D tensor harmonics
■ as in 4D, the Regge-Wheeler gauge involves setting the

coefficients of the most “complicated” harmonics equal to
zero
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Regge-Wheeler gauge

■ we don’t always have to use the RS gauge with nAhAB = 0
(i.e. hty = hry = · · · = hyy = 0)

■ in the general hAB =
∑

nlm Zn(y)h
(nlm)
AB with

h
(nlm)
AB =

11
∑

i=1

Pnilm(t, r)P
(ilm)
AB (Ω) +

4
∑

j=1

Anj
lm(t, r)A

(ilm)
AB (Ω)

■ P
(ilm)
AB and A

(ilm)
AB are the natural 5D generalizations of the

4D tensor harmonics
■ as in 4D, the Regge-Wheeler gauge involves setting the

coefficients of the most “complicated” harmonics equal to
zero

■ also as in 4D, the remaining coefficients are gauge invariant
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Example: l ≥ 2 axial perturbations

■ radial wavefunctions in the RS gauge follow from the master
equation:
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Example: l ≥ 2 axial perturbations

■ radial wavefunctions in the RS gauge follow from the master
equation:

ω2

[

u1

u2

]

= − d2

dx2

[

u1

u2

]

+

[

V RS
11 V RS

12

V RS
21 V RS

22

] [

u1

u2

]
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Example: l ≥ 2 axial perturbations

■ radial wavefunctions in the RS gauge follow from the master
equation:

ω2

[

u1

u2

]

= − d2

dx2

[

u1

u2

]

+

[

V RS
11 V RS

12

V RS
21 V RS

22

] [

u1

u2

]

lim
x→−∞

[

V RS
11 V RS

12

V RS
21 V RS

22

]

= 0, lim
x→∞

[

V RS
11 V RS

12

V RS
21 V RS

22

]

=

[

m2 0

0 m2

]
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Example: l ≥ 2 axial perturbations

■ radial wavefunctions in the RS gauge follow from the master
equation:

ω2

[

u1

u2

]

= − d2

dx2

[

u1

u2

]

+

[

V RS
11 V RS

12

V RS
21 V RS

22

] [

u1

u2

]

lim
x→−∞

[

V RS
11 V RS

12

V RS
21 V RS

22

]

= 0, lim
x→∞

[

V RS
11 V RS

12

V RS
21 V RS

22

]

=

[

m2 0

0 m2

]

■ in the RW gauge, we obtain a different potential matrix
[

V RW
11 V RW

12

V RW
21 V RW

22

]

,
V RW

11 = RW potential for a massive 4D graviton
V RW

22 = RW potential for a massive 4D photon
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Example: l ≥ 2 axial perturbations

■ radial wavefunctions in the RS gauge follow from the master
equation:

ω2

[

u1

u2

]

= − d2

dx2

[

u1

u2

]

+

[

V RS
11 V RS

12

V RS
21 V RS

22

] [

u1

u2

]

lim
x→−∞

[

V RS
11 V RS

12

V RS
21 V RS

22

]

= 0, lim
x→∞

[

V RS
11 V RS

12

V RS
21 V RS

22

]

=

[

m2 0

0 m2

]

■ in the RW gauge, we obtain a different potential matrix
[

V RW
11 V RW

12

V RW
21 V RW

22

]

,
V RW

11 = RW potential for a massive 4D graviton
V RW

22 = RW potential for a massive 4D photon

■ 4D observers interpret these perturbations as a massive
graviton coupled to a massive graviphoton
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Gregory-Laflamme instability

http://www.tech.port.ac.uk/staffweb/seahras


Randall-Sundrum scenarios

A braneworld black hole model

Linear perturbations

The massive modes

Recovering GR

Angular decomposition

Gregory-Laflamme instability

● Spherical perturbations

● Spherical wave equation

● The s-wave potential

● Braneworld stability criteria

● Other instabilities?

Source-free GWs

GWs from point sources

KK scaling formulae

Detection scenarios

Final comments

Sanjeev S. Seahra; 19 April, 2007 Gravitational waves in braneworld scenarios - p. 38/68

Spherical perturbations

(see also Kodama and Obler lectures)
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Spherical perturbations

(see also Kodama and Obler lectures)

■ Birkhoff’s theorem states the only solution to N -dimensional
Einstein equations GAB = ΛgAB with structure R

2 × SN−2

are time-independent
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Spherical perturbations

(see also Kodama and Obler lectures)

■ Birkhoff’s theorem states the only solution to N -dimensional
Einstein equations GAB = ΛgAB with structure R

2 × SN−2

are time-independent
◆ they possess a hypersurface orthogonal timelike Killing

vector
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Spherical perturbations

(see also Kodama and Obler lectures)

■ Birkhoff’s theorem states the only solution to N -dimensional
Einstein equations GAB = ΛgAB with structure R

2 × SN−2

are time-independent
◆ they possess a hypersurface orthogonal timelike Killing

vector
■ in 4D, this implies that there are no spherical GWs about a

Schwarzschild background
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Spherical perturbations

(see also Kodama and Obler lectures)

■ Birkhoff’s theorem states the only solution to N -dimensional
Einstein equations GAB = ΛgAB with structure R

2 × SN−2

are time-independent
◆ they possess a hypersurface orthogonal timelike Killing

vector
■ in 4D, this implies that there are no spherical GWs about a

Schwarzschild background
■ black string background has structure R

3 × S2
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Spherical perturbations

(see also Kodama and Obler lectures)

■ Birkhoff’s theorem states the only solution to N -dimensional
Einstein equations GAB = ΛgAB with structure R

2 × SN−2

are time-independent
◆ they possess a hypersurface orthogonal timelike Killing

vector
■ in 4D, this implies that there are no spherical GWs about a

Schwarzschild background
■ black string background has structure R

3 × S2

◆ Birkhoff’s theorem does not apply
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Spherical perturbations

(see also Kodama and Obler lectures)

■ Birkhoff’s theorem states the only solution to N -dimensional
Einstein equations GAB = ΛgAB with structure R

2 × SN−2

are time-independent
◆ they possess a hypersurface orthogonal timelike Killing

vector
■ in 4D, this implies that there are no spherical GWs about a

Schwarzschild background
■ black string background has structure R

3 × S2

◆ Birkhoff’s theorem does not apply
◆ can have radiative s-wave (l = 0) GWs
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Spherical wave equation

■ in 1991, Gregory and Laflamme showed that black strings in
vacuum space are unstable
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Spherical wave equation

■ in 1991, Gregory and Laflamme showed that black strings in
vacuum space are unstable
◆ generalized to AdS space in 2000 by Gregory
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Spherical wave equation

■ in 1991, Gregory and Laflamme showed that black strings in
vacuum space are unstable
◆ generalized to AdS space in 2000 by Gregory

■ original Gregory-Laflamme instability was found for an l = 0
perturbation
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Spherical wave equation

■ in 1991, Gregory and Laflamme showed that black strings in
vacuum space are unstable
◆ generalized to AdS space in 2000 by Gregory

■ original Gregory-Laflamme instability was found for an l = 0
perturbation

■ writing Ψ
polar
n00 = eiωτψn(x) and switching off sources, we

have
[

ω2 +
d2

dx2
− Vs(x,mn)

]

ψn = 0
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Spherical wave equation

■ in 1991, Gregory and Laflamme showed that black strings in
vacuum space are unstable
◆ generalized to AdS space in 2000 by Gregory

■ original Gregory-Laflamme instability was found for an l = 0
perturbation

■ writing Ψ
polar
n00 = eiωτψn(x) and switching off sources, we

have
[

ω2 +
d2

dx2
− Vs(x,mn)

]

ψn = 0

■ eiωτ time dependence ⇒ instability if the potential supports a
normalizable bound state (with ω2 < 0)
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Spherical wave equation

■ in 1991, Gregory and Laflamme showed that black strings in
vacuum space are unstable
◆ generalized to AdS space in 2000 by Gregory

■ original Gregory-Laflamme instability was found for an l = 0
perturbation

■ writing Ψ
polar
n00 = eiωτψn(x) and switching off sources, we

have
[

ω2 +
d2

dx2
− Vs(x,mn)

]

ψn = 0

■ eiωτ time dependence ⇒ instability if the potential supports a
normalizable bound state (with ω2 < 0)

■ does the s-wave potential actually support a bound state?
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Potential in the s-wave equation
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Potential in the s-wave equation

profile of bulk modes
along extra dimension
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Braneworld stability criteria

■ first KK mass m1 = µ1/GM was smallest solution of

Y1(mnℓ)J1(mnℓe
kd) = J1(mnℓ)Y1(mnℓe

kd)
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Braneworld stability criteria

■ first KK mass m1 = µ1/GM was smallest solution of

Y1(mnℓ)J1(mnℓe
kd) = J1(mnℓ)Y1(mnℓe

kd)

■ the Gregory-Laflamme instability is circumvented if

µ1 = µ1(M,d, ℓ) = GMm1(d, ℓ) > 0.4301
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Braneworld stability criteria

■ first KK mass m1 = µ1/GM was smallest solution of

Y1(mnℓ)J1(mnℓe
kd) = J1(mnℓ)Y1(mnℓe

kd)

■ the Gregory-Laflamme instability is circumvented if

µ1 = µ1(M,d, ℓ) = GMm1(d, ℓ) > 0.4301

■ useful stability criterion when ekd ≫ 1:

M

M⊙
& 1.1 × 10−6

(

ℓ

0.1 mm

)

e(d−5ℓ)/ℓ
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Braneworld stability criteria

condition on first
KK mass translates
into constraint on
mass and brane

separation
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Braneworld stability criteria

small brane separation

get stability for:

h
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 m
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Braneworld stability criteria

brane bending DOF
mimics scalar-tensor
theory at low energy;
hence, solar system

constraints limit
minimum brane

separation
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Braneworld stability criteria
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Other instabilities?

■ are there any instabilities for non-spherical perturbations?
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Other instabilities?

■ are there any instabilities for non-spherical perturbations?
■ analytically addressing this is hard (see Kodama’s lectures)
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Other instabilities?

■ are there any instabilities for non-spherical perturbations?
■ analytically addressing this is hard (see Kodama’s lectures)
■ we have tried various things like numerically integrating the

wave equations in the time domain with various initial
conditions
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Other instabilities?

■ are there any instabilities for non-spherical perturbations?
■ analytically addressing this is hard (see Kodama’s lectures)
■ we have tried various things like numerically integrating the

wave equations in the time domain with various initial
conditions
◆ no evidence for any other unstable modes
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Other instabilities?

■ are there any instabilities for non-spherical perturbations?
■ analytically addressing this is hard (see Kodama’s lectures)
■ we have tried various things like numerically integrating the

wave equations in the time domain with various initial
conditions
◆ no evidence for any other unstable modes
◆ not a proof. . .
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Source-free GWs
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Numeric integration of wave equations

■ principal differences between 4D-like zero-mode and
massive mode signals can be seen by numerically
integrating master equations
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Numeric integration of wave equations

■ principal differences between 4D-like zero-mode and
massive mode signals can be seen by numerically
integrating master equations

■ work with source-free axial l = 2 equations and no brane
bending (consistent solution of field equations)
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Numeric integration of wave equations

■ principal differences between 4D-like zero-mode and
massive mode signals can be seen by numerically
integrating master equations

■ work with source-free axial l = 2 equations and no brane
bending (consistent solution of field equations)

■ look at lowest-order KK modes n = 0 . . . 3
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Numeric integration of wave equations

■ principal differences between 4D-like zero-mode and
massive mode signals can be seen by numerically
integrating master equations

■ work with source-free axial l = 2 equations and no brane
bending (consistent solution of field equations)

■ look at lowest-order KK modes n = 0 . . . 3

■ initial data is a gaussian pulse at x = 50 incident on the
string (same for each mode)
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Numeric integration of wave equations

■ principal differences between 4D-like zero-mode and
massive mode signals can be seen by numerically
integrating master equations

■ work with source-free axial l = 2 equations and no brane
bending (consistent solution of field equations)

■ look at lowest-order KK modes n = 0 . . . 3

■ initial data is a gaussian pulse at x = 50 incident on the
string (same for each mode)

■ waveforms are for an observer at x = 100 on the visible
brane
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Numeric integration of wave equations

■ principal differences between 4D-like zero-mode and
massive mode signals can be seen by numerically
integrating master equations

■ work with source-free axial l = 2 equations and no brane
bending (consistent solution of field equations)

■ look at lowest-order KK modes n = 0 . . . 3

■ initial data is a gaussian pulse at x = 50 incident on the
string (same for each mode)

■ waveforms are for an observer at x = 100 on the visible
brane

■ dimensionless KK mass µn = GMmn
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Numeric waveforms
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Composite gravitational wave signal

■ the total gravity wave signal is a sum of contributions from all
mass modes
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Composite gravitational wave signal

■ the total gravity wave signal is a sum of contributions from all
mass modes

■ to reconstruct the total signal, we need to specify bulk initial
data and decompose it with respect to the {Zn} basis
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Composite gravitational wave signal

■ the total gravity wave signal is a sum of contributions from all
mass modes

■ to reconstruct the total signal, we need to specify bulk initial
data and decompose it with respect to the {Zn} basis

■ the expansion coefficients tell us how much of each massive
mode to include in the composite signal
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Composite gravitational wave signal

■ the total gravity wave signal is a sum of contributions from all
mass modes

■ to reconstruct the total signal, we need to specify bulk initial
data and decompose it with respect to the {Zn} basis

■ the expansion coefficients tell us how much of each massive
mode to include in the composite signal

■ practically, we are limited to using the 9 lowest mass modes
in the composite waveforms
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Composite gravitational wave signal

■ Example 1: truncated zero
mode initial data
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Composite gravitational wave signal

■ Example 1: truncated zero
mode initial data

■ (very) crude approximation
to the gravitational field of a
small brane confined black
hole or relativistic star
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Composite gravitational wave signal

■ Example 1: truncated zero
mode initial data

■ (very) crude approximation
to the gravitational field of a
small brane confined black
hole or relativistic star

■ late time corrections to the
usual BH ringdown
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Composite gravitational wave signal

■ Example 1: truncated zero
mode initial data

■ (very) crude approximation
to the gravitational field of a
small brane confined black
hole or relativistic star

■ late time corrections to the
usual BH ringdown
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Composite gravitational wave signal

■ Example 1: truncated zero
mode initial data

■ (very) crude approximation
to the gravitational field of a
small brane confined black
hole or relativistic star

■ late time corrections to the
usual BH ringdown
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Composite gravitational wave signal

■ Example 1: truncated zero
mode initial data

■ (very) crude approximation
to the gravitational field of a
small brane confined black
hole or relativistic star

■ late time corrections to the
usual BH ringdown
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Composite gravitational wave signal

■ Example 2: Gaussian initial
data
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Composite gravitational wave signal

■ Example 2: Gaussian initial
data

■ corresponds to an event that
takes place ‘mostly in the
bulk,’ like the merger of black
strings
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Composite gravitational wave signal

■ Example 2: Gaussian initial
data

■ corresponds to an event that
takes place ‘mostly in the
bulk,’ like the merger of black
strings

■ canonical 4D waveform
swamped by 5D effects
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Composite gravitational wave signal

■ Example 2: Gaussian initial
data

■ corresponds to an event that
takes place ‘mostly in the
bulk,’ like the merger of black
strings

■ canonical 4D waveform
swamped by 5D effects
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The story behind wavetails

(see also Siopsis and Kokkotas lectures)
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The story behind wavetails

(see also Siopsis and Kokkotas lectures)

■ why do we have this long lasting massive mode wavetail?
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The story behind wavetails

(see also Siopsis and Kokkotas lectures)

■ why do we have this long lasting massive mode wavetail?
■ we’re solving equations of the form

(∂2
t − ∂2

x + V )ψ = 0 ψ(0, x) = known = ψ̇(0, x)

where the potential V goes to µ2 + O(1/r) as x→ ∞
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The story behind wavetails

(see also Siopsis and Kokkotas lectures)

■ why do we have this long lasting massive mode wavetail?
■ we’re solving equations of the form

(∂2
t − ∂2

x + V )ψ = 0 ψ(0, x) = known = ψ̇(0, x)

where the potential V goes to µ2 + O(1/r) as x→ ∞
■ the formal solution of the initial value problem involves using

a frequency-space Green’s function

ψ(t, x) ∼
∫

dx′
∫

dω eiωt/MGω(x, x′)Iω(x′)

◆ Gω(x, x′) is the Fourier transform of the Green’s function
◆ Iω(x′) is some function of the initial data
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The story behind wavetails

(see also Siopsis and Kokkotas lectures)

■ why do we have this long lasting massive mode wavetail?
■ we’re solving equations of the form

(∂2
t − ∂2

x + V )ψ = 0 ψ(0, x) = known = ψ̇(0, x)

where the potential V goes to µ2 + O(1/r) as x→ ∞
■ the formal solution of the initial value problem involves using

a frequency-space Green’s function

ψ(t, x) ∼
∫

dx′
∫

dω eiωt/MGω(x, x′)Iω(x′)

◆ Gω(x, x′) is the Fourier transform of the Green’s function
◆ Iω(x′) is some function of the initial data

■ the interesting features come from the ω integral
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Contour integration

The complex frequency plane
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Contour integration

Non-trivial structure of the (massless)
Green’s function
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Contour integration

To compute the integral, we complete the contour as shown
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Contour integration

Various parts of the integral are responsible for
different gravity wave features
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Contour integration

A non-zero field mass changes the branch cut
and integration contour
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Contour integration

A non-zero field mass changes the branch cut
and integration contour
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Late time Green’s function

■ Koyama and Tomimatsu (2001) have looked at the branch
cut contribution for V = µ2 + O(1/r)
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Late time Green’s function

■ Koyama and Tomimatsu (2001) have looked at the branch
cut contribution for V = µ2 + O(1/r)

■ they find
G(t;x, x′) ∼ µ1/3(µt)−5/6 sin(µt)
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Late time Green’s function

■ Koyama and Tomimatsu (2001) have looked at the branch
cut contribution for V = µ2 + O(1/r)

■ they find
G(t;x, x′) ∼ µ1/3(µt)−5/6 sin(µt)

■ we’ll use this later
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Massive mode frequencies

■ to determine if we can actually detect slowly-decaying KK
modes, we need to know about their frequencies and
amplitudes
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Massive mode frequencies

■ to determine if we can actually detect slowly-decaying KK
modes, we need to know about their frequencies and
amplitudes

■ GW frequency associated with nth mode is

fn ≈ ce−d/ℓ(n+ 1
4 )

2ℓ
= 1.0× 1010

(

0.1 mm

ℓ

)

e5−d/ℓ(n+ 1
4 ) Hz

(recall that d/ℓ & 5). N.B.: fn is independent of M
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Massive mode frequencies

■ to determine if we can actually detect slowly-decaying KK
modes, we need to know about their frequencies and
amplitudes

■ GW frequency associated with nth mode is

fn ≈ ce−d/ℓ(n+ 1
4 )

2ℓ
= 1.0× 1010

(

0.1 mm

ℓ

)

e5−d/ℓ(n+ 1
4 ) Hz

(recall that d/ℓ & 5). N.B.: fn is independent of M
■ assuming ℓ = 0.1 mm:

d/ℓ fn eg. detector string mass

33 & 10−2 Hz LISA & 10+6 M⊙

24 & 10+2 Hz LIGO & 10+2 M⊙

10 & 10+8 Hz B’ham (?) & 10−4 M⊙
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GWs from point sources
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Black string GW sources

■ what kind of real astrophysical events could result in GW
emission from black strings?
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Black string GW sources

■ what kind of real astrophysical events could result in GW
emission from black strings?
◆ two black strings merge
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Black string GW sources

■ what kind of real astrophysical events could result in GW
emission from black strings?
◆ two black strings merge
◆ a brane localized black hole grows past the GL threshold

by accretion and becomes a black string
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Black string GW sources

■ what kind of real astrophysical events could result in GW
emission from black strings?
◆ two black strings merge
◆ a brane localized black hole grows past the GL threshold

by accretion and becomes a black string
◆ a small object on one of the branes has a close

encounter with the black string
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Black string GW sources

■ what kind of real astrophysical events could result in GW
emission from black strings?
◆ two black strings merge
◆ a brane localized black hole grows past the GL threshold

by accretion and becomes a black string
◆ a small object on one of the branes has a close

encounter with the black string
■ first two events are intriguing and may produce a lot of GWs,

but we don’t really know how to calculate this
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Black string GW sources

■ what kind of real astrophysical events could result in GW
emission from black strings?
◆ two black strings merge
◆ a brane localized black hole grows past the GL threshold

by accretion and becomes a black string
◆ a small object on one of the branes has a close

encounter with the black string
■ first two events are intriguing and may produce a lot of GWs,

but we don’t really know how to calculate this
■ when the mass ratio is small, the last event can be modeled

in perturbation theory
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Black string GW sources

■ what kind of real astrophysical events could result in GW
emission from black strings?
◆ two black strings merge
◆ a brane localized black hole grows past the GL threshold

by accretion and becomes a black string
◆ a small object on one of the branes has a close

encounter with the black string
■ first two events are intriguing and may produce a lot of GWs,

but we don’t really know how to calculate this
■ when the mass ratio is small, the last event can be modeled

in perturbation theory
◆ analogous to extreme mass ratio inspirals (EMRIs) in GR

http://www.tech.port.ac.uk/staffweb/seahras


Randall-Sundrum scenarios

A braneworld black hole model

Linear perturbations

The massive modes

Recovering GR

Angular decomposition

Gregory-Laflamme instability

Source-free GWs

GWs from point sources

● Black string GW sources

● Point source assumption

● EOMs with sources

● Radiative s-wave channel

● Point mass Lagrangian

● Bounded orbit

● Fly-by orbit

KK scaling formulae

Detection scenarios

Final comments

Sanjeev S. Seahra; 19 April, 2007 Gravitational waves in braneworld scenarios - p. 53/68

Point source assumption

■ in GR, EMRIs are modeled by assuming the smaller object
is a point source
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Point source assumption

■ in GR, EMRIs are modeled by assuming the smaller object
is a point source

■ makes sense if the horizon radius of the black hole is much
larger than the dimensions of the small body
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Point source assumption

■ in GR, EMRIs are modeled by assuming the smaller object
is a point source

■ makes sense if the horizon radius of the black hole is much
larger than the dimensions of the small body

■ in our problem there is another length scale ℓ
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Point source assumption

■ in GR, EMRIs are modeled by assuming the smaller object
is a point source

■ makes sense if the horizon radius of the black hole is much
larger than the dimensions of the small body

■ in our problem there is another length scale ℓ
■ problematic: a typical small body will still be larger than ℓ
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Point source assumption

■ in GR, EMRIs are modeled by assuming the smaller object
is a point source

■ makes sense if the horizon radius of the black hole is much
larger than the dimensions of the small body

■ in our problem there is another length scale ℓ
■ problematic: a typical small body will still be larger than ℓ
■ let’s use the delta function approximation anyways, should

give an upper limit on the amplitude of GWs from these
events
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Equations of motion with sources

■ we make the assumptions

Σbulk
AB = 0 and Σ+

AB = 0 or Σ−
AB = 0
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Equations of motion with sources

■ we make the assumptions

Σbulk
AB = 0 and Σ+

AB = 0 or Σ−
AB = 0

■ we decompose hAB as

hAB =
κ2

5(GM)2

C eαAe
β
B

∞
∑

n=0

Zn(y)Zn(y±)h
(n)
αβ .

◆ C is a normalization constant (to be specified later) with
dimensions of (mass)−4
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Equations of motion with sources

■ we make the assumptions

Σbulk
AB = 0 and Σ+

AB = 0 or Σ−
AB = 0

■ we decompose hAB as

hAB =
κ2

5(GM)2

C eαAe
β
B

∞
∑

n=0

Zn(y)Zn(y±)h
(n)
αβ .

◆ C is a normalization constant (to be specified later) with
dimensions of (mass)−4

■ define a dimensionless brane stress-energy tensors and
brane bending scalars by

Θ±
αβ = CeAαeBβ T±

AB , ξ̃± =
Cξ±

(GM)2κ2
5

.
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Equations of motion with sources

■ the equation of motion for h(n)
αβ is

(GM)2
[

∇γ∇γh
(n)
αβ + 2Rα

γ
β
δh

(n)
γδ

]

− µ2
nh

(n)
αβ =

− 2
(

Θαβ − 1
3Θgαβ

)

− 4(GM)2∇α∇β ξ̃
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Equations of motion with sources

■ the equation of motion for h(n)
αβ is

(GM)2
[

∇γ∇γh
(n)
αβ + 2Rα

γ
β
δh

(n)
γδ

]

− µ2
nh

(n)
αβ =

− 2
(

Θαβ − 1
3Θgαβ

)

− 4(GM)2∇α∇β ξ̃

■ the equation of motion for ξ̃ is

∇α∇αξ̃ = 1
6Θ
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Equations of motion with sources

■ the equation of motion for h(n)
αβ is

(GM)2
[

∇γ∇γh
(n)
αβ + 2Rα

γ
β
δh

(n)
γδ

]

− µ2
nh

(n)
αβ =

− 2
(

Θαβ − 1
3Θgαβ

)

− 4(GM)2∇α∇β ξ̃

■ the equation of motion for ξ̃ is

∇α∇αξ̃ = 1
6Θ

■ we also have the conditions

∇αh
(n)
αβ = ∇αΘαβ = 0 = gαβh

(n)
αβ
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Radiative s-wave channel

■ we decompose the problem in terms of spherical harmonics:

ξ̃ =
ξ(s)√
4π

+

∞
∑

l=1

l
∑

m=−l

Ylmξ̃lm

h
(n)
αβ =

h
(n,s)
αβ√
4π

+

∞
∑

l=1

l
∑

m=−l

10
∑

i=1

[Y
(i)
lm ]αβ h

(nlm)
i

Θαβ =
Θ

(s)
αβ√
4π

+

∞
∑

l=1

l
∑

m=−l

10
∑

i=1

[Y
(i)
lm ]αβ Θ

(lm)
i
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Radiative s-wave channel

■ we decompose the problem in terms of spherical harmonics:

ξ̃ =
ξ(s)√
4π

+

∞
∑

l=1

l
∑

m=−l

Ylmξ̃lm

h
(n)
αβ =

h
(n,s)
αβ√
4π

+

∞
∑

l=1

l
∑

m=−l

10
∑

i=1

[Y
(i)
lm ]αβ h

(nlm)
i

Θαβ =
Θ

(s)
αβ√
4π

+

∞
∑

l=1

l
∑

m=−l

10
∑

i=1

[Y
(i)
lm ]αβ Θ

(lm)
i

■ just worry about s-wave sector from now on
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Radiative s-wave channel

■ write the l = 0 contribution to the metric perturbation as

h
(n,s)
αβ = H1 tαtβ − 2H2 t(αrβ) + H3 rαrα + K γαβ ,

where we have defined

tα = f−1/2∂t, rα = f1/2∂r, γαβ = gαβ + tαtβ − rαrβ
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Radiative s-wave channel

■ write the l = 0 contribution to the metric perturbation as

h
(n,s)
αβ = H1 tαtβ − 2H2 t(αrβ) + H3 rαrα + K γαβ ,

where we have defined

tα = f−1/2∂t, rα = f1/2∂r, γαβ = gαβ + tαtβ − rαrβ

■ more definitions:

ρ =
r

GM
, τ =

t

GM
, x = ρ+ 2 ln

(ρ

2
− 1

)
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Radiative s-wave channel

■ write the l = 0 contribution to the metric perturbation as

h
(n,s)
αβ = H1 tαtβ − 2H2 t(αrβ) + H3 rαrα + K γαβ ,

where we have defined

tα = f−1/2∂t, rα = f1/2∂r, γαβ = gαβ + tαtβ − rαrβ

■ more definitions:

ρ =
r

GM
, τ =

t

GM
, x = ρ+ 2 ln

(ρ

2
− 1

)

■ the master variables:

ψ =
2ρ3

2 + µ2ρ3

(

ρ
∂K

∂τ
− fH2

)

, ϕ = ρ
∂ξ(s)

∂τ
.
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Radiative s-wave channel

■ ψ = ψ(τ, x) and ϕ = ϕ(τ, x) satisfy:

(∂2
τ − ∂2

x + Vψ)ψ = Sψ + Î ϕ
(∂2
τ − ∂2

x + Vϕ)ϕ = Sϕ
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Radiative s-wave channel

■ ψ = ψ(τ, x) and ϕ = ϕ(τ, x) satisfy:

(∂2
τ − ∂2

x + Vψ)ψ = Sψ + Î ϕ
(∂2
τ − ∂2

x + Vϕ)ϕ = Sϕ

■ the various terms are

Vψ =
f

ρ3 (2 + ρ3µ2)
2

[

µ6ρ9+6µ4ρ7−18µ4ρ6−24µ2ρ4+36µ2ρ3+8
]

Sψ =
2fρ3

3(2 + µ2ρ3)2

[

ρ(2+µ2ρ3)∂τ (2Λ1 + 3Λ3)+6(µ2ρ3−4)fΛ2

]

Vϕ =
2f

ρ3
Sϕ =

ρf

6
∂τΛ1

Î =
8f

(2 + µ2ρ3)2
[

6fρ2∂ρ + (µ2ρ3 − 6ρ+ 8)
]
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Radiative s-wave channel

■ we have defined the following three scalars:

Λ1 = −Θ
(s)
αβg

αβ Λ2 = −Θ
(s)
αβt

αrβ Λ3 = +Θ
(s)
αβγ

αβ
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Radiative s-wave channel

■ we have defined the following three scalars:

Λ1 = −Θ
(s)
αβg

αβ Λ2 = −Θ
(s)
αβt

αrβ Λ3 = +Θ
(s)
αβγ

αβ

■ also have the inversion formulae

∂τH1 =
1

ρ

[(

∂2
τ +

3

ρ
∂ρ + µ2

)

ψ +
4

µ2

(

∂2
τ −

1

ρ
∂ρ

)

ϕ

]

,

H2 =
1

ρ

[(

∂ρ +
2

ρ

)

ψ +
4

µ2

(

∂ρ −
1

ρ

)

ϕ

]

,

∂τH3 =
1

ρ

[(

∂2
τ +

1

ρ
∂ρ

)

ψ +
4

µ2

(

∂2
τ −

2

ρ
∂ρ

)

ϕ

]

,

∂τK =
1

ρ

[(

1

ρ
∂ρ +

µ2

2

)

ψ +
4

µ2ρ

(

∂ρ −
1

ρ

)

ϕ

]
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Point mass Lagrangian

■ take the Lagrangian of a particle on either brane to be

L±
p =

Mp

2

{

∫

δ4(zµ − zµp )
√−q qαβ

dzαp
dη

dzβp
dη

dη

}±

.

where η is an affine parameter

http://www.tech.port.ac.uk/staffweb/seahras


Randall-Sundrum scenarios

A braneworld black hole model

Linear perturbations

The massive modes

Recovering GR

Angular decomposition

Gregory-Laflamme instability

Source-free GWs

GWs from point sources

● Black string GW sources

● Point source assumption

● EOMs with sources

● Radiative s-wave channel

● Point mass Lagrangian

● Bounded orbit

● Fly-by orbit

KK scaling formulae

Detection scenarios

Final comments

Sanjeev S. Seahra; 19 April, 2007 Gravitational waves in braneworld scenarios - p. 56/68

Point mass Lagrangian

■ take the Lagrangian of a particle on either brane to be

L±
p =

Mp

2

{

∫

δ4(zµ − zµp )
√−q qαβ

dzαp
dη

dzβp
dη

dη

}±

.

where η is an affine parameter
■ everything defined w.r.t. induced metric q±αβ = a2

±gαβ
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Point mass Lagrangian

■ take the Lagrangian of a particle on either brane to be

L±
p =

Mp

2

{

∫

δ4(zµ − zµp )
√−q qαβ

dzαp
dη

dzβp
dη

dη

}±

.

where η is an affine parameter
■ everything defined w.r.t. induced metric q±αβ = a2

±gαβ

■ need to re-express in terms of Schwarzschild metric gαβ
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Point mass Lagrangian

■ take the Lagrangian of a particle on either brane to be

L±
p =

Mp

2

{

∫

δ4(zµ − zµp )
√−q qαβ

dzαp
dη

dzβp
dη

dη

}±

.

where η is an affine parameter
■ everything defined w.r.t. induced metric q±αβ = a2

±gαβ

■ need to re-express in terms of Schwarzschild metric gαβ
■ leads to stress energy tensor

T±
αβ =

Mp

a±

∫

δ4(zµ − zµp )
√−g uαuβ dλ, uα∇αu

β = 0

where λ is the affine parameter w.r.t. gαβ
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Point mass Lagrangian

■ T±
αβ can be decomposed in spherical harmonics

T±
αβ =

f

C±Eρ2
uαuβδ(ρ−ρp)

[

1

4π
+

∞
∑

l=1

l
∑

m=−l

Ylm(Ω)Y ∗
lm(Ωp)

]
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Point mass Lagrangian

■ T±
αβ can be decomposed in spherical harmonics

T±
αβ =

f

C±Eρ2
uαuβδ(ρ−ρp)

[

1

4π
+

∞
∑

l=1

l
∑

m=−l

Ylm(Ω)Y ∗
lm(Ωp)

]

■ we have defined

C± =
(GM)3

Mpeky±
E = −gαβuαξβ(t) ξα(t) = ∂t.

i.e. E is the usual energy
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Point mass Lagrangian

■ T±
αβ can be decomposed in spherical harmonics

T±
αβ =

f

C±Eρ2
uαuβδ(ρ−ρp)

[

1

4π
+

∞
∑

l=1

l
∑

m=−l

Ylm(Ω)Y ∗
lm(Ωp)

]

■ we have defined

C± =
(GM)3

Mpeky±
E = −gαβuαξβ(t) ξα(t) = ∂t.

i.e. E is the usual energy
■ the s-wave contribution is the first one in the square brackets
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Bounded orbit

Particle in quasi-periodic orbit close to black string

http://www.tech.port.ac.uk/staffweb/seahras


Randall-Sundrum scenarios

A braneworld black hole model

Linear perturbations

The massive modes

Recovering GR

Angular decomposition

Gregory-Laflamme instability

Source-free GWs

GWs from point sources

● Black string GW sources

● Point source assumption

● EOMs with sources

● Radiative s-wave channel

● Point mass Lagrangian

● Bounded orbit

● Fly-by orbit

KK scaling formulae

Detection scenarios

Final comments

Sanjeev S. Seahra; 19 April, 2007 Gravitational waves in braneworld scenarios - p. 57/68

Bounded orbit

Distant observer only sees (weak) periodic signal with
frequency m (no information about orbit)
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Fly-by orbit

High kinetic energy particle briefly captured by black string
before escaping to infinity
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Fly-by orbit

Much higher amplitude slowly-decaying signal observed
far away due to sharp acceleration
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Scaling formulae for KK amplitudes
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Estimating high n amplitudes

(∂2
τ − ∂2

x + V
(n)
ψ )ψn = Sψ + Î ϕ

(∂2
τ − ∂2
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■ it is possible to estimate the amplitude of high µn modes

from low µ simulations using asymptotic expansions of the
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Green’s functions
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■ we can’t do an infinite number of simulations
■ it is possible to estimate the amplitude of high µn modes
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Amplitudes

A detailed analysis leads to the following approximation for the perturbation
far from the string:
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A detailed analysis leads to the following approximation for the perturbation
far from the string:

let us illustrate the properties of the characteristic
amplitudes with an example:
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(actually a large number of discrete modes)
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Signal-to-noise ratio

■ let Hn(t) be the linear response of a GW detector to the nth

KK mode
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■ let Hn(t) be the linear response of a GW detector to the nth

KK mode
■ the signal-to-noise ratio in the detector is

SNR =

[

∑

n

2

S(fn)

∫ T

0

H2
n(t) dt

]1/2

where S(f) is the spectral noise density and T is the
observation time
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where S(f) is the spectral noise density and T is the
observation time

■ increasing d/ℓ generally decreases Hn(t)
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Signal-to-noise ratio

■ let Hn(t) be the linear response of a GW detector to the nth

KK mode
■ the signal-to-noise ratio in the detector is

SNR =

[

∑

n

2

S(fn)

∫ T

0

H2
n(t) dt

]1/2

where S(f) is the spectral noise density and T is the
observation time

■ increasing d/ℓ generally decreases Hn(t)

■ however, for a “low frequency” device like (A)LIGO
increasing d/ℓ puts more modes in the waveband and
actually increases the SNR
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Detection of shadow particles

■ may be possible to
detect shadow matter
with (A)LIGO
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■ assign a statistic X =
A(Mp/M⊙)(r/kpc)−1

to a given shadow
event
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detect shadow matter
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■ contours indicate what
parameter values
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SNR = 1
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Detection of shadow particles

■ may be possible to
detect shadow matter
with (A)LIGO

■ assign a statistic X =
A(Mp/M⊙)(r/kpc)−1

to a given shadow
event

■ contours indicate what
parameter values
imply detection with
SNR = 1

■ assumed a one-year
integration time for
periodic orbit
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High frequency detectors

■ high frequency detectors may be able to see KK radiation
from visible sources
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■ high frequency detectors may be able to see KK radiation
from visible sources

■ hypothetical detector
◆ f0 = 1014 Hz
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High frequency detectors

■ high frequency detectors may be able to see KK radiation
from visible sources

■ hypothetical detector
◆ f0 = 1014 Hz
◆ ∆f = 1013 Hz
◆ hstrain = 10−23 Hz−1/2
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■ high frequency detectors may be able to see KK radiation
from visible sources

■ hypothetical detector
◆ f0 = 1014 Hz
◆ ∆f = 1013 Hz
◆ hstrain = 10−23 Hz−1/2

■ hypothetical event
◆ fly-by orbit
◆ Mp = 1M⊙

◆ M ≈ 4 × 106M⊙
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High frequency detectors

■ high frequency detectors may be able to see KK radiation
from visible sources

■ hypothetical detector
◆ f0 = 1014 Hz
◆ ∆f = 1013 Hz
◆ hstrain = 10−23 Hz−1/2

■ hypothetical event
◆ fly-by orbit
◆ Mp = 1M⊙

◆ M ≈ 4 × 106M⊙

◆ r ≈ 8 kpc
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High frequency detectors

SNR induced in the detector for this event:

■ N is the number of modes in the detector waveband
■ measuring SNR and N fixes ℓ (assuming other parameters

like M are known)
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What has been shown:

■ the late time signal from a point particle consists of a
superposition of discrete (essentially monochromatic) KK
modes
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■ the late time signal from a point particle consists of a
superposition of discrete (essentially monochromatic) KK
modes
◆ for small brane separations, the KK modes are high

frequency and have relatively high amplitude
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■ the late time signal from a point particle consists of a
superposition of discrete (essentially monochromatic) KK
modes
◆ for small brane separations, the KK modes are high

frequency and have relatively high amplitude
◆ for large brane separations, the KK modes are lower

frequency but have relatively low amplitude
■ this make the detection of KK modes with devices such as

LIGO tricky
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◆ for large brane separations, the KK modes are lower
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■ this make the detection of KK modes with devices such as

LIGO tricky
■ the situation is much better for a high frequency detector
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Summary

What has been shown:

■ the late time signal from a point particle consists of a
superposition of discrete (essentially monochromatic) KK
modes
◆ for small brane separations, the KK modes are high

frequency and have relatively high amplitude
◆ for large brane separations, the KK modes are lower

frequency but have relatively low amplitude
■ this make the detection of KK modes with devices such as

LIGO tricky
■ the situation is much better for a high frequency detector
■ GWs from matter on the shadow brane are much easier to

detect
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What is left to do:

■ the major weakness of the calculation is the point source
assumption
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Summary

What is left to do:

■ the major weakness of the calculation is the point source
assumption

■ need better source modelling
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Summary

What is left to do:

■ the major weakness of the calculation is the point source
assumption

■ need better source modelling
■ determine the dependence of the amplitude parameter A on

source orbit
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Summary

What is left to do:

■ the major weakness of the calculation is the point source
assumption

■ need better source modelling
■ determine the dependence of the amplitude parameter A on

source orbit
■ higher order multipoles

http://www.tech.port.ac.uk/staffweb/seahras


Randall-Sundrum scenarios

A braneworld black hole model

Linear perturbations

The massive modes

Recovering GR

Angular decomposition

Gregory-Laflamme instability

Source-free GWs

GWs from point sources

KK scaling formulae

Detection scenarios

Final comments

● Summary

● Some things to keep in mind

Sanjeev S. Seahra; 19 April, 2007 Gravitational waves in braneworld scenarios - p. 67/68

Summary

What is left to do:

■ the major weakness of the calculation is the point source
assumption

■ need better source modelling
■ determine the dependence of the amplitude parameter A on

source orbit
■ higher order multipoles
■ gravitational wave background (KK masses are the same for

all black strings)
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Some things to keep in mind

■ our choice of sources to model was based on computational
convenience, not physics
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Some things to keep in mind

■ our choice of sources to model was based on computational
convenience, not physics
◆ events like black string mergers and GL phase transition

could produce a lot more KK radiation

http://www.tech.port.ac.uk/staffweb/seahras


Randall-Sundrum scenarios

A braneworld black hole model

Linear perturbations

The massive modes

Recovering GR

Angular decomposition

Gregory-Laflamme instability

Source-free GWs

GWs from point sources

KK scaling formulae

Detection scenarios

Final comments

● Summary

● Some things to keep in mind

Sanjeev S. Seahra; 19 April, 2007 Gravitational waves in braneworld scenarios - p. 68/68

Some things to keep in mind

■ our choice of sources to model was based on computational
convenience, not physics
◆ events like black string mergers and GL phase transition

could produce a lot more KK radiation
■ did we really need the black string?
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■ our choice of sources to model was based on computational
convenience, not physics
◆ events like black string mergers and GL phase transition

could produce a lot more KK radiation
■ did we really need the black string?

◆ it was awful nice to have an analytic background to
perturb
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■ our choice of sources to model was based on computational
convenience, not physics
◆ events like black string mergers and GL phase transition

could produce a lot more KK radiation
■ did we really need the black string?

◆ it was awful nice to have an analytic background to
perturb

◆ the main observational signatures were derived from
generic properties of the potential
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Some things to keep in mind

■ our choice of sources to model was based on computational
convenience, not physics
◆ events like black string mergers and GL phase transition

could produce a lot more KK radiation
■ did we really need the black string?

◆ it was awful nice to have an analytic background to
perturb

◆ the main observational signatures were derived from
generic properties of the potential
■ these should go through to other compact sources
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