

Sanjeev Seahra (with G Hossain, V Husain and I Brown)

July 11, 2012

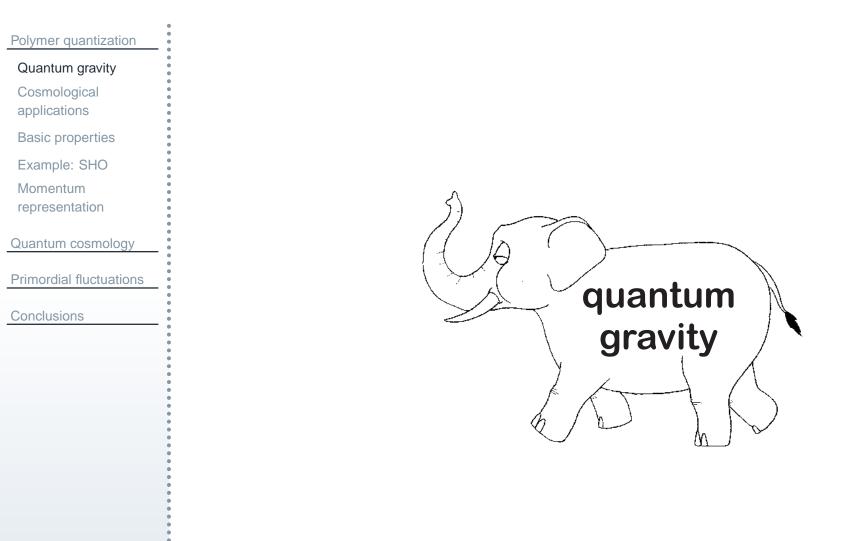
Polymer quantization Quantum gravity Cosmological applications Basic properties Example: SHO Momentum representation

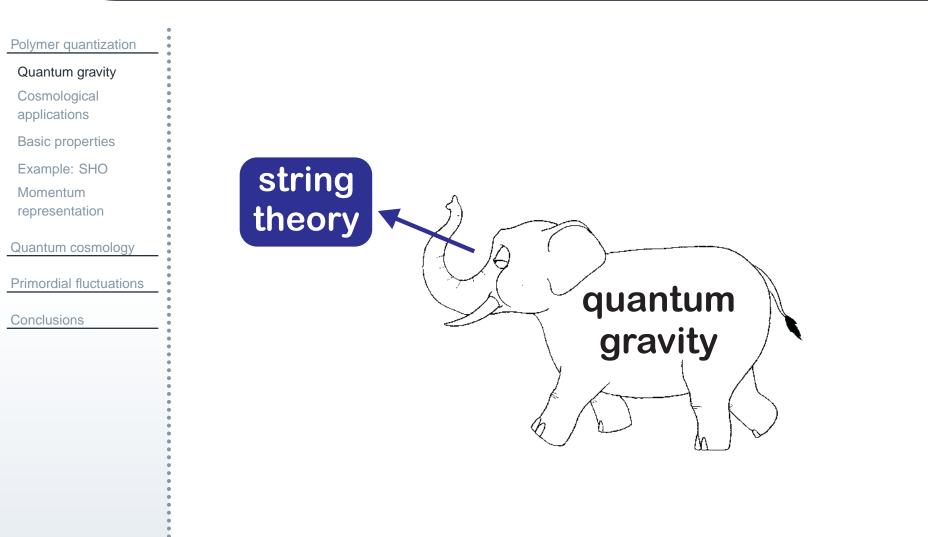
Quantum cosmology

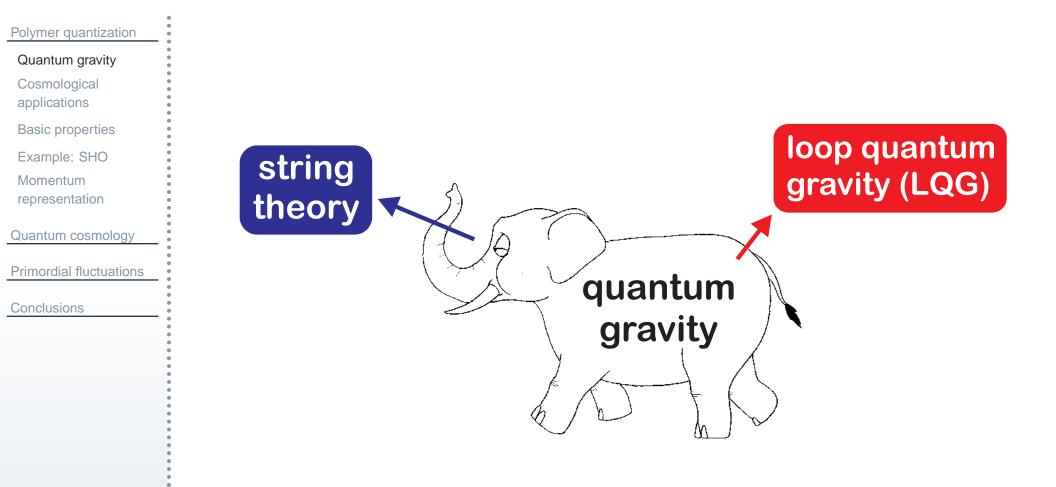
Primordial fluctuations

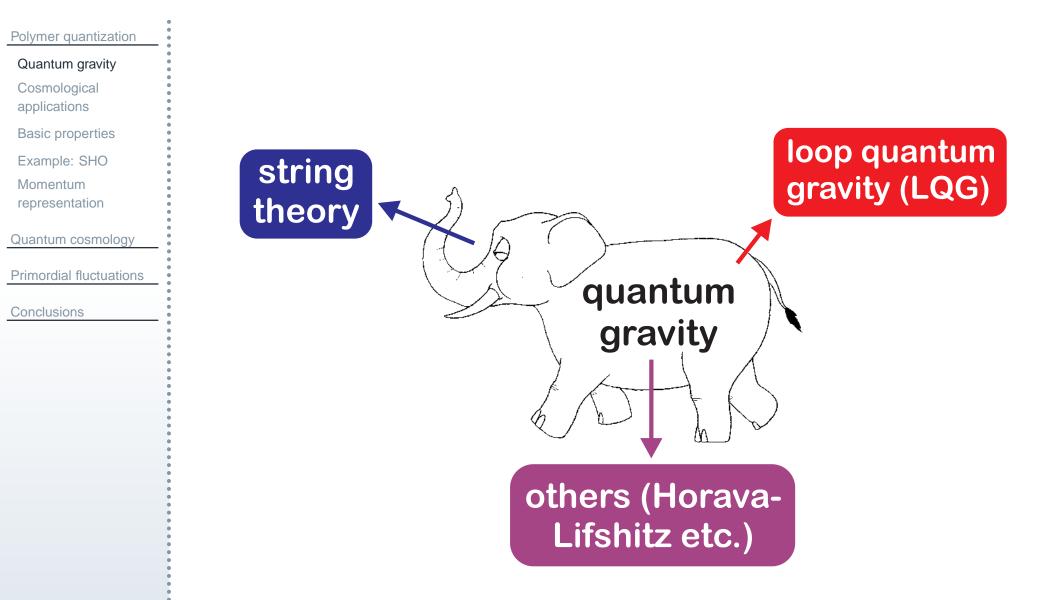
Conclusions

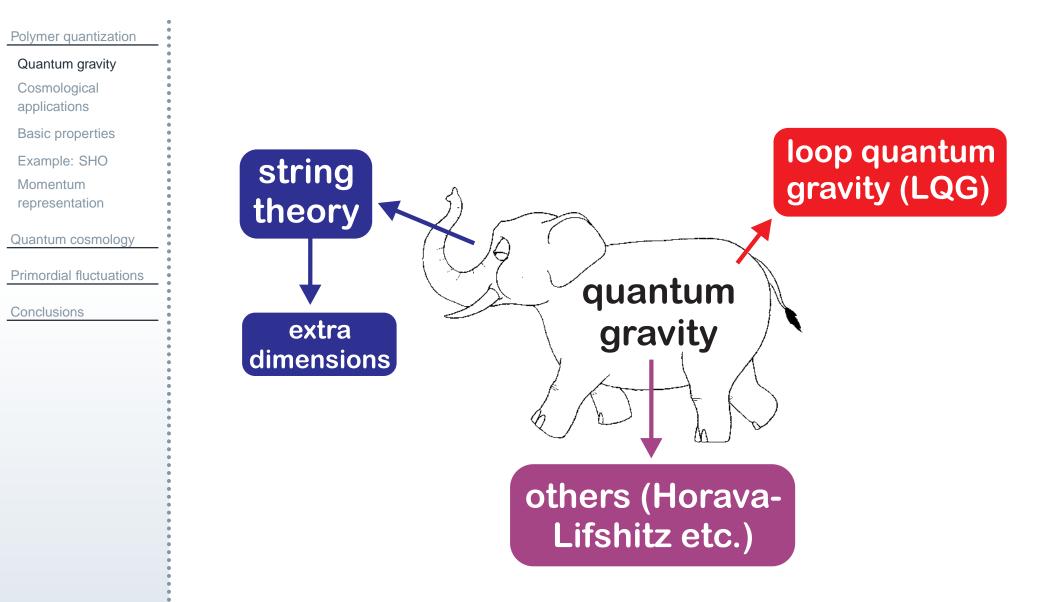
Polymer quantization

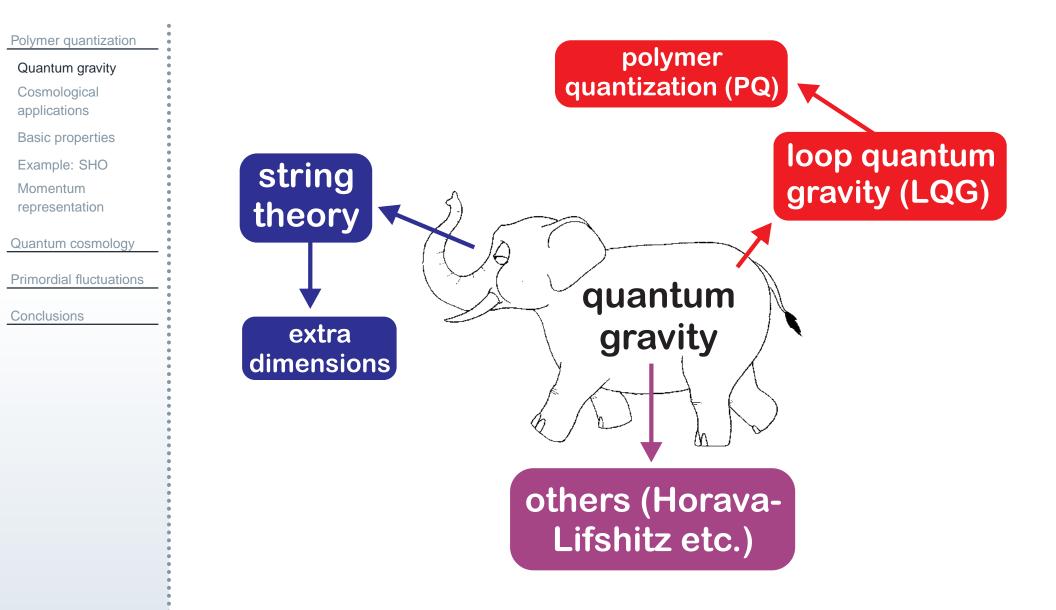












Polymer quantization	•
Quantum gravity	•
Cosmological applications	•
Basic properties	•
Example: SHO	•
Momentum representation	•
Quantum cosmology	•
Primordial fluctuations	•
Conclusions	•

polymer quantization corrects Schrödinger quantization at high energies

Polymer quantization	p
Quantum gravity	1-
Cosmological applications	е
Basic properties	
Example: SHO	
Momentum representation	
Quantum cosmology	
Primordial fluctuations	
Conclusions	

- polymer quantization corrects Schrödinger quantization at high energies
 - can look for effects in the (quantum cosmological) evolution of the universe at high density

Polymer quantizationQuantum gravityCosmological
applicationsBasic propertiesExample: SHOMomentum
representationQuantum cosmologyPrimordial fluctuationsConclusions

- polymer quantization corrects Schrödinger quantization at high energies
 - can look for effects in the (quantum cosmological) evolution of the universe at high density
- polymer quantization also corrects Schrödinger quantization on small scales

Polymer quantizationQuantum gravityCosmological
applicationsBasic propertiesExample: SHOMomentum
representationQuantum cosmologyPrimordial fluctuationsConclusions

- polymer quantization corrects Schrödinger quantization at high energies
 - can look for effects in the (quantum cosmological) evolution of the universe at high density
- polymer quantization also corrects Schrödinger quantization on small scales
 - □ trans-Planckian problem: quantum primordial perturbations that seed structure in the universe have physical scale $\ll l_{\rm Pl}$ at beginning of inflation

Polymer quantization
Quantum gravity
Cosmological applications
Basic properties
Example: SHO
Momentum
representation
Quantum cosmology
Primordial fluctuations

Conclusions

- polymer quantization corrects Schrödinger quantization at high energies
 - can look for effects in the (quantum cosmological) evolution of the universe at high density
- polymer quantization also corrects Schrödinger quantization on small scales
 - □ trans-Planckian problem: quantum primordial perturbations that seed structure in the universe have physical scale $\ll l_{\rm Pl}$ at beginning of inflation
 - should look for polymer quantization effects in the spectrum of primordial perturbations and dynamics of the early universe

r orymor quantization
Quantum gravity
Cosmological applications
Basic properties
Example: SHO
Momentum representation
Quantum cosmology
Primordial fluctuations

Polymer quantization

Conclusions

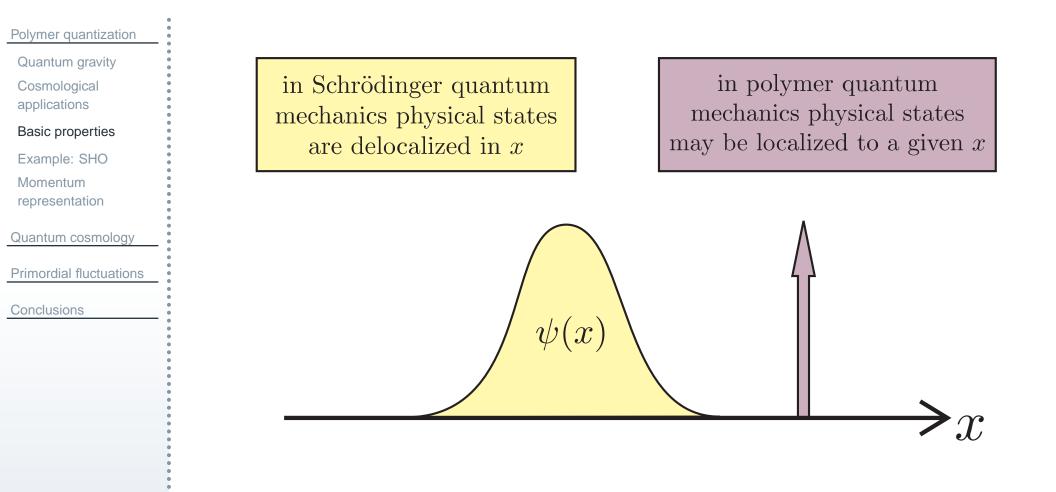
what is the difference between polymer and Schrodinger quantization?

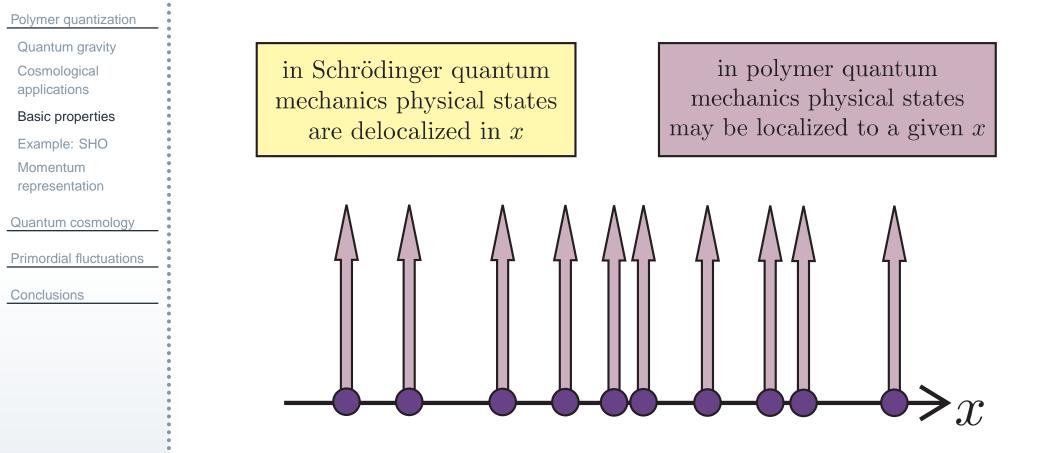
Polymer quantization	•	
Quantum gravity Cosmological applications	0 0 0 0 0	
Basic properties	• • •	
Example: SHO Momentum representation		cons
Quantum cosmology	• • •	mo
Primordial fluctuations	•	
Conclusions		

sider a particle ving on a line:

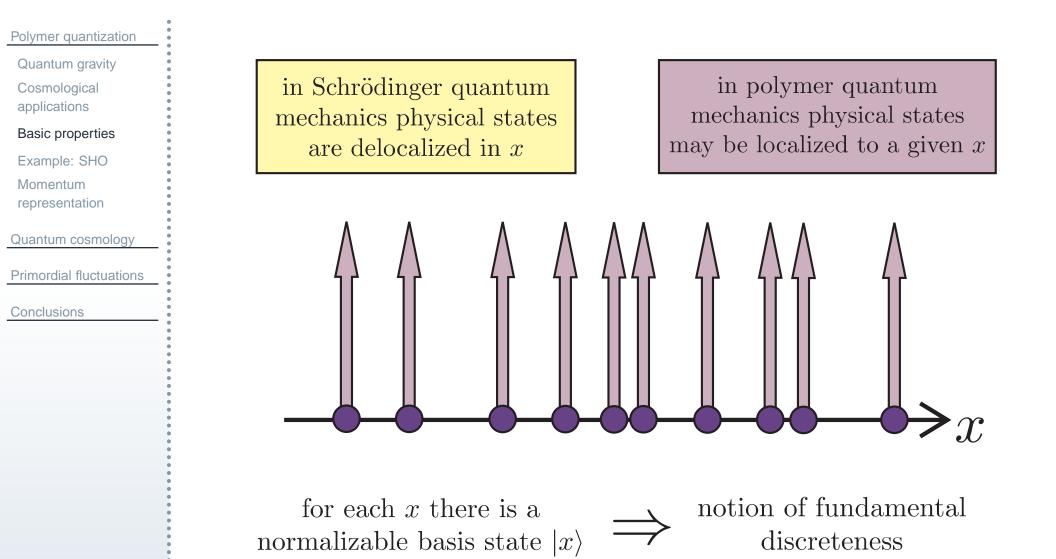
 \mathcal{X}

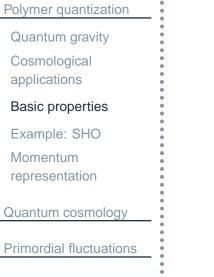
Polymer quantization Quantum gravity Cosmological applications Basic properties Example: SHO	in Schrödinger quantum mechanics physical states are delocalized in x	
Momentum representation		
Quantum cosmology Primordial fluctuations Conclusions	$\psi($	
		~ X





for each x there is a normalizable basis state $|x\rangle$



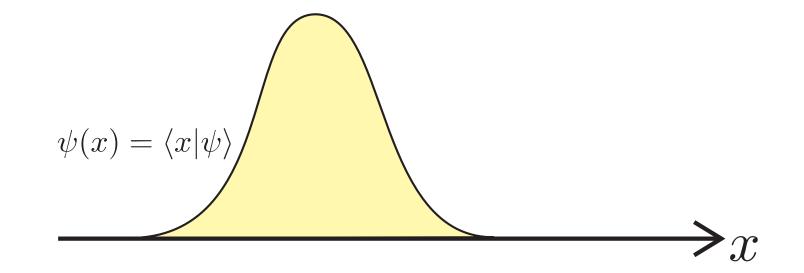


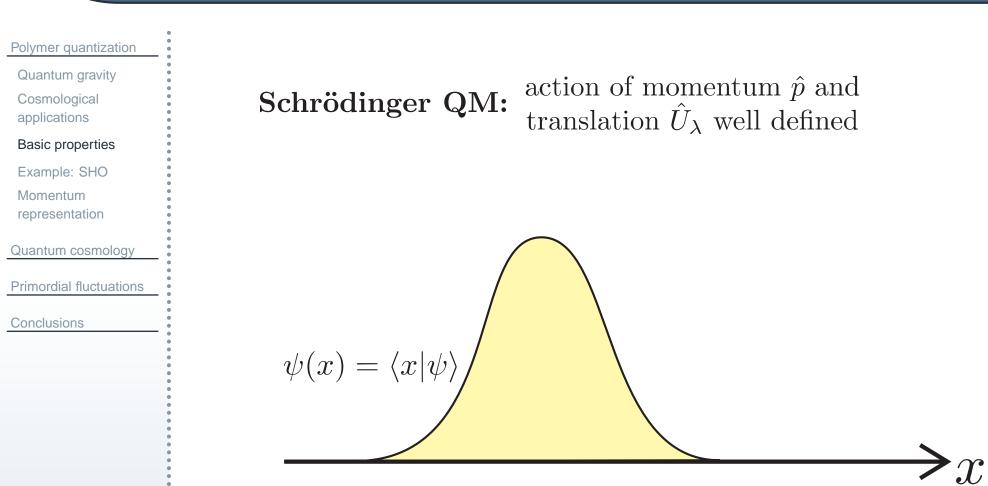
Conclusions

what are the basic operators in polymer quantum mechanics?

Polymer quantization	•
Quantum gravity	•
Cosmological applications	•
Basic properties	•
Example: SHO	•
Momentum representation	•
Quantum cosmology	•
Primordial fluctuations	•
Conclusions	•
	•

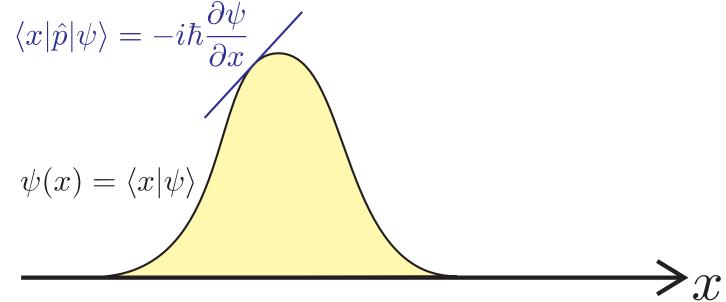
Schrödinger QM:

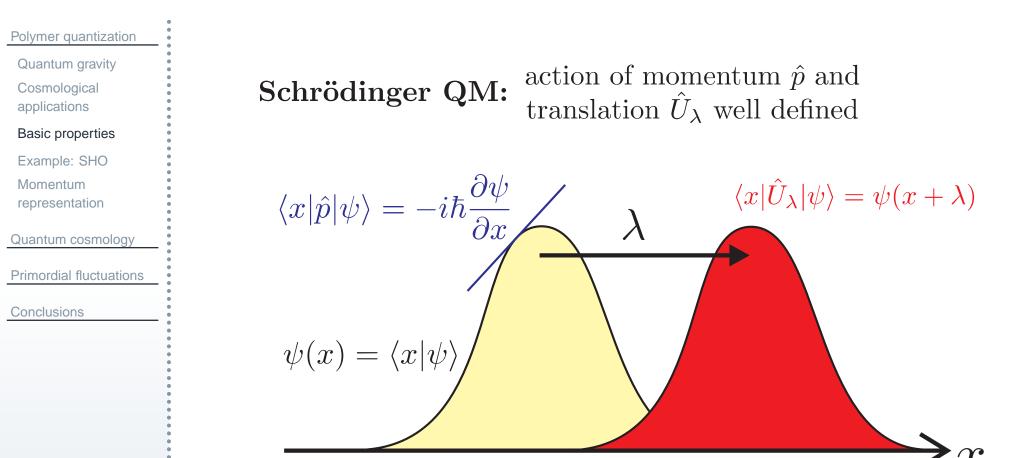


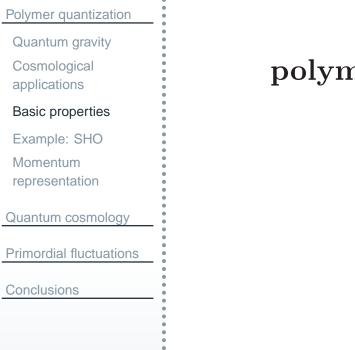


Polymer quantizationQuantum gravityCosmological
applicationsBasic propertiesExample: SHO
Momentum
representationQuantum cosmologyPrimordial fluctuationsConclusions $\psi(x)$

Schrödinger QM: action of momentum \hat{p} and translation \hat{U}_{λ} well defined



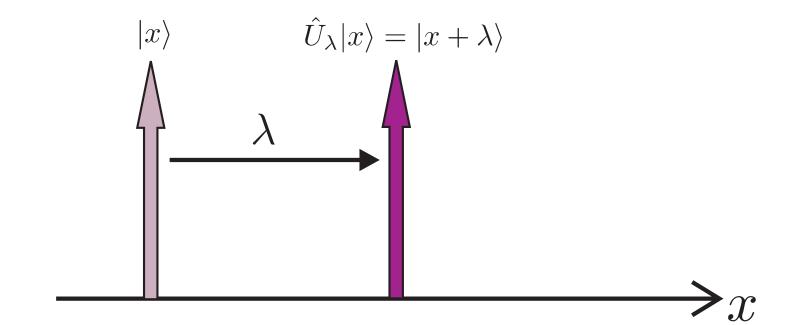




polymer QM:

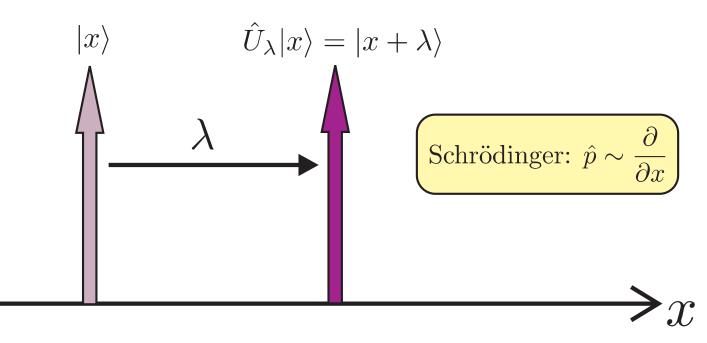
Polymer quantization	•
Quantum gravity	•
Cosmological applications	•
Basic properties	•
Example: SHO	•
Momentum representation	•
Quantum cosmology	•
Primordial fluctuations	•
Conclusions	•
	•

polymer QM: translation \hat{U}_{λ} well-defined

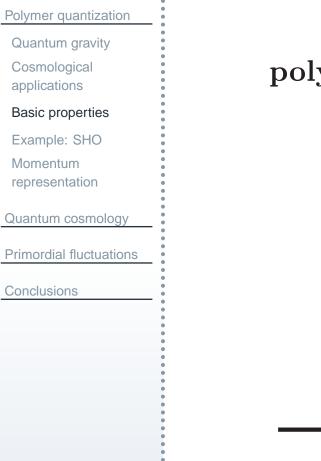


Polymer quantizationQuantum gravityCosmologicalapplicationsBasic propertiesExample: SHOMomentumrepresentationQuantum cosmologyPrimordial fluctuationsConclusions

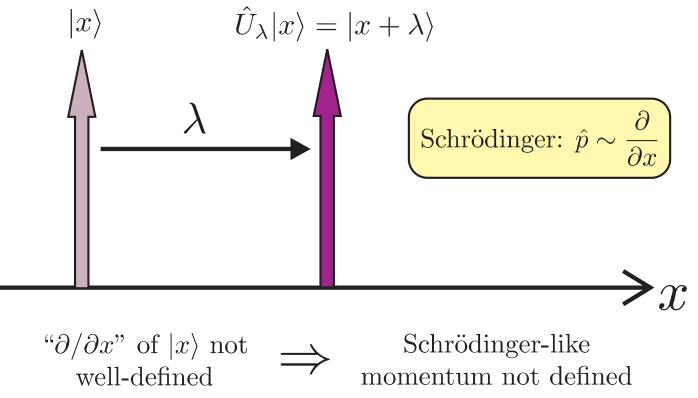
polymer QM: translation \hat{U}_{λ} well-defined



" $\partial/\partial x$ " of $|x\rangle$ not well-defined



polymer QM: translation \hat{U}_{λ} well-defined



Polymer quantization

Quantum gravity

Cosmological

applications

Basic properties

Example: SHO

Momentum

representation

Quantum cosmology

Primordial fluctuations

Conclusions

momentum in polymer QM given by:

$$\hat{p} \mapsto \hat{p}_{\lambda_{\star}} \equiv i\hbar \left(\frac{\hat{U}_{\lambda_{\star}} - \hat{U}_{\lambda_{\star}}^{\dagger}}{2\lambda_{\star}}\right)$$

Polymer quantization

Quantum gravity

Cosmological

applications

Basic properties

Example: SHO

Momentum

representation

Quantum cosmology

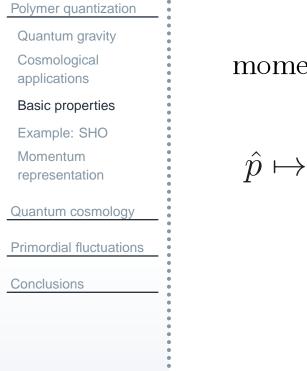
Primordial fluctuations

Conclusions

momentum in polymer QM given by:

$$\hat{p} \mapsto \hat{p}_{\lambda_{\star}} \equiv i\hbar \left(\frac{\hat{U}_{\lambda_{\star}} - \hat{U}_{\lambda_{\star}}^{\dagger}}{2\lambda_{\star}}\right) \blacktriangleleft$$

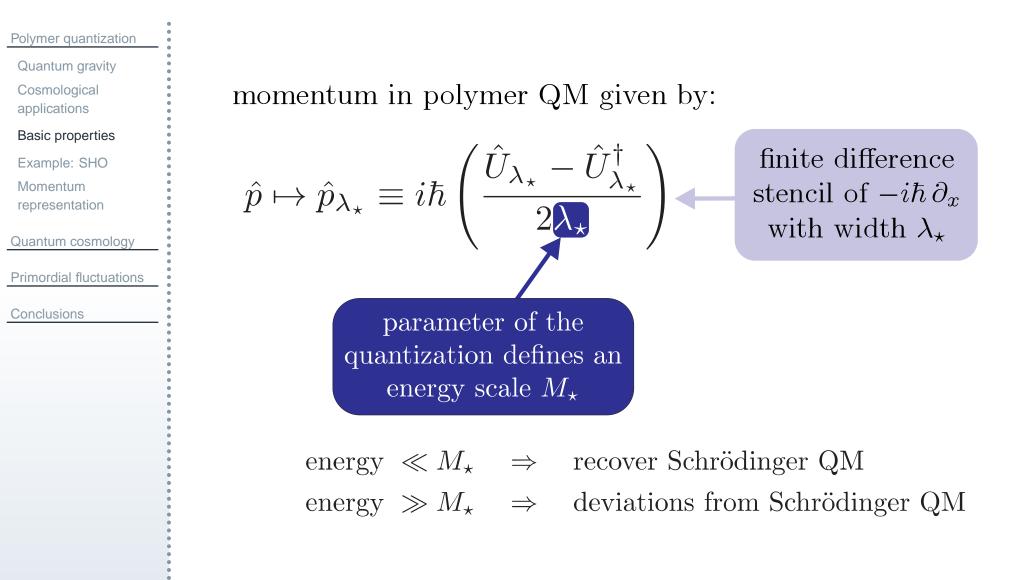
finite difference stencil of $-i\hbar \partial_x$ with width λ_{\star}



momentum in polymer QM given by:

$$\hat{p} \mapsto \hat{p}_{\lambda_{\star}} \equiv i\hbar \left(\frac{\hat{U}_{\lambda_{\star}} - \hat{U}_{\lambda_{\star}}^{\dagger}}{2\lambda_{\star}} \right) \qquad \text{finite difference} \\ \text{stencil of } -i\hbar \partial_x \\ \text{with width } \lambda_{\star} \end{aligned}$$

$$parameter of the \\ \text{quantization defines an} \\ \text{energy scale } M_{\star} \end{aligned}$$



Polymer quantization	
Quantum gravity	
Cosmological applications	momentum in polymer QM given by:
Basic properties	
Example: SHO	$\left(\hat{U}_{\lambda} - \hat{U}_{\lambda}^{\dagger} \right)$ finite difference
Momentum representation	$\hat{p} \mapsto \hat{p}_{\lambda} \equiv i\hbar \left[\frac{-\lambda_{\star}}{2} \right] = i\hbar \partial_x$ stencil of $-i\hbar \partial_x$
	$\hat{p} \mapsto \hat{p}_{\lambda_{\star}} \equiv i\hbar \left(\frac{\hat{U}_{\lambda_{\star}} - \hat{U}_{\lambda_{\star}}^{\dagger}}{2\lambda_{\star}} \right) \longleftarrow \text{ finite difference stencil of } -i\hbar \partial_x \text{ with width } \lambda_{\star}$
Quantum cosmology	
Primordial fluctuations	
Conclusions	parameter of the N.B.: not unique choice of \hat{p}
	quantization defines an M_{\star} —ought to be
	determined from experiment
	energy scale M_{\star}
	energy $\ll M_{\star} \Rightarrow$ recover Schrödinger QM
	energy $\gg M_{\star} \Rightarrow$ deviations from Schrödinger QM

Example: the simple harmonic oscillator

 Polymer quantization

 Quantum gravity

 Cosmological

 applications

 Basic properties

 Example: SHO

 Momentum

 representation

 Quantum cosmology

 Primordial fluctuations

 Conclusions

let's find the energy eigenvalues of a polymer-quantized SHO of mass m and frequency ω

Example: the simple harmonic oscillator

Polymer quantization Quantum gravity

Cosmological

applications

Basic properties

Example: SHO

Momentum representation

Quantum cosmology

Primordial fluctuations

Conclusions

let's find the energy eigenvalues of a polymer-quantized SHO of mass m and frequency ω

conventional Hamiltonian: $\hat{H} = \frac{1}{2m}\hat{p}^2 + \frac{1}{2}m\omega^2\hat{x}^2$

Example: the simple harmonic oscillator

Polymer quantization

Quantum gravity

Cosmological

applications

Basic properties

Example: SHO

Momentum representation

Quantum cosmology

Primordial fluctuations

Conclusions

let's find the energy eigenvalues of a polymer-quantized SHO of mass m and frequency ω

conventional Hamiltonian: $\hat{H} = \frac{1}{2m}\hat{p}^2 + \frac{1}{2}m\omega^2\hat{x}^2$

polymer Hamiltonian:

$$\hat{H} = \frac{1}{2m} \left[i \left(\frac{\hat{U}_{\lambda} - \hat{U}_{\lambda}^{\dagger}}{2\lambda} \right) \right]^2 + \frac{1}{2} m \omega^2 \hat{x}^2, \quad M_{\star} = \frac{1}{\lambda}$$

Example: the simple harmonic oscillator

Polymer quantization

Quantum gravity

Cosmological

applications

Basic properties

Example: SHO

Momentum representation

Quantum cosmology

Primordial fluctuations

Conclusions

- let's find the energy eigenvalues of a polymer-quantized SHO of mass m and frequency ω
- conventional Hamiltonian: $\hat{H} = \frac{1}{2m}\hat{p}^2 + \frac{1}{2}m\omega^2\hat{x}^2$
 - polymer Hamiltonian: $\hat{H} = \frac{1}{2m} \left[i \left(\frac{\hat{U}_{\lambda} - \hat{U}_{\lambda}^{\dagger}}{2\lambda} \right) \right]^2 + \frac{1}{2} m \omega^2 \hat{x}^2, \quad M_{\star} = \frac{1}{\lambda}$
- position eigenstate basis: $|\Psi
 angle = \sum_{j=-\infty} c_j |x_j
 angle$ with $x_j = x_0 + j\lambda$
 - $\Box \quad \hat{x}|x_{j}\rangle = x_{j}|x_{j}\rangle$ $\Box \quad \hat{U}_{\lambda}|x_{j}\rangle = |x_{j+1}\rangle$ $\Box \quad \langle x_{j}|x_{j'}\rangle = \delta_{j,j'}$

Example: the simple harmonic oscillator

Polymer quantization Quantum gravity

Cosmological

applications

Basic properties

Example: SHO

Momentum representation

Quantum cosmology

Primordial fluctuations

Conclusions

projection of energy eigenvalue equation $\hat{H}|\Psi\rangle = E|\Psi\rangle$ onto $|x_i\rangle$ yields a difference equation for c_i 's:

$$\frac{1}{8m\lambda^2}(2c_j - c_{j-2} - c_{j+2}) + \frac{1}{2}m\omega^2 x_j c_j = Ec_j$$

- what you would get from a simple finite differencing of the ordinary Schrödinger equation
- □ could obtain energy eigenvalues numerically

Polymer quantization	
Quantum gravity	•
Cosmological applications	
Basic properties	
Example: SHO	
Momentum	•
representation)))
	•
Quantum cosmology	•
)))
Primordial fluctuations	8

Conclusions

easier to work in "momentum eigenstate" basis:

$$|p\rangle = \sum_{j=-\infty}^{\infty} e^{-ipx_j} |x_j\rangle, \quad p \in \left[-\frac{\pi}{2\lambda}, \frac{\pi}{2\lambda}\right]$$

Polymer quantization
Quantum gravity
Cosmological applications
Basic properties
Example: SHO
Momentum representation
Quantum cosmology
Primordial fluctuations

Conclusions

easier to work in "momentum eigenstate" basis:

$$|p\rangle = \sum_{j=-\infty}^{\infty} e^{-ipx_j} |x_j\rangle, \quad p \in \left[-\frac{\pi}{2\lambda}, \frac{\pi}{2\lambda}\right]$$

• wavefunction: $\Psi(p) = \langle p | \Psi \rangle$

Polymer quantization Quantum gravity Cosmological applications Basic properties Example: SHO Momentum representation Quantum cosmology

Primordial fluctuations

Conclusions

easier to work in "momentum eigenstate" basis:

$$|p\rangle = \sum_{j=-\infty}^{\infty} e^{-ipx_j} |x_j\rangle, \quad p \in \left[-\frac{\pi}{2\lambda}, \frac{\pi}{2\lambda}\right]$$

wavefunction: $\Psi(p) = \langle p | \Psi \rangle$

operators: $\langle p|\hat{U}_{\lambda}|\Psi\rangle = e^{i\lambda p}\Psi(p)$ and $\langle p|\hat{x}|\Psi\rangle = i\hbar\partial_{p}\Psi(p)$

Polymer quantization Quantum gravity Cosmological applications Basic properties Example: SHO Momentum representation Quantum cosmology Primordial fluctuations Conclusions easier to work in "momentum eigenstate" basis:

$$|p\rangle = \sum_{j=-\infty}^{\infty} e^{-ipx_j} |x_j\rangle, \quad p \in \left[-\frac{\pi}{2\lambda}, \frac{\pi}{2\lambda}\right]$$

wavefunction: $\Psi(p) = \langle p | \Psi \rangle$ operators: $\langle p | \hat{U}_{\lambda} | \Psi \rangle = e^{i\lambda p} \Psi(p)$ and $\langle p | \hat{x} | \Psi \rangle = i\hbar \partial_p \Psi(p)$ projecting eigenvalue equation $\hat{H} | \Psi \rangle = E | \Psi \rangle$ onto $| p \rangle$:

$$E\Psi = \frac{\omega}{2} \left[-\frac{\partial^2}{\partial y^2} + \frac{\sin^2(\sqrt{g}y)}{g} \right] \Psi, \quad y = \frac{p}{\sqrt{m\omega}}, \quad g = \frac{m\omega}{M_\star^2}$$

 Polymer quantization

 Quantum gravity

 Cosmological

 applications

 Basic properties

 Example: SHO

 Momentum

 representation

 Quantum cosmology

 Primordial fluctuations

 Conclusions

easier to work in "momentum eigenstate" basis:

$$|p\rangle = \sum_{j=-\infty}^{\infty} e^{-ipx_j} |x_j\rangle, \quad p \in \left[-\frac{\pi}{2\lambda}, \frac{\pi}{2\lambda}\right]$$

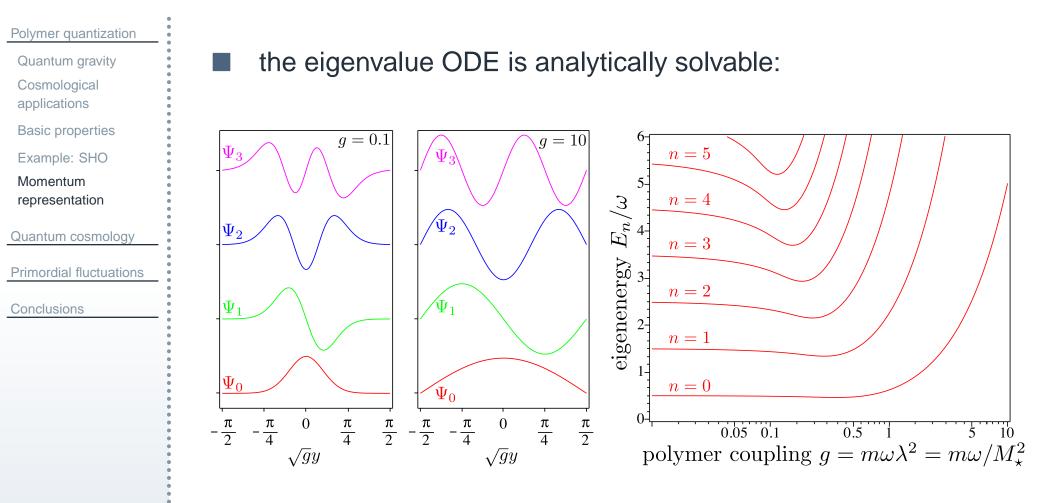
wavefunction: $\Psi(p) = \langle p | \Psi \rangle$

operators: $\langle p|\hat{U}_{\lambda}|\Psi\rangle = e^{i\lambda p}\Psi(p)$ and $\langle p|\hat{x}|\Psi\rangle = i\hbar\partial_{p}\Psi(p)$

I projecting eigenvalue equation $\hat{H}|\Psi
angle=E|\Psi
angle$ onto |p
angle:

$$E\Psi = \frac{\omega}{2} \left[-\frac{\partial^2}{\partial y^2} + \frac{\sin^2(\sqrt{g}y)}{g} \right] \Psi, \quad y = \frac{p}{\sqrt{m\omega}}, \quad g = \frac{m\omega}{M_\star^2}$$

"low energy" quantum states with $\Delta y \ll g^{-1/2}$ recover standard eigenfunctions/energies



recover Schrödinger quantization for $g \ll 1$

Polymer quantization	•
Quantum cosmology	
Quantum cosmologies	• • •
Avoiding the big bang	•
Semiclassical approx	
Friedmann equation	•
Numerical results	•
Primordial fluctuations	

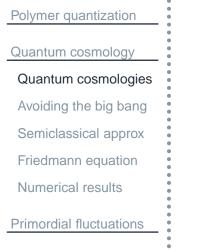
.

Conclusions

Quantum cosmology

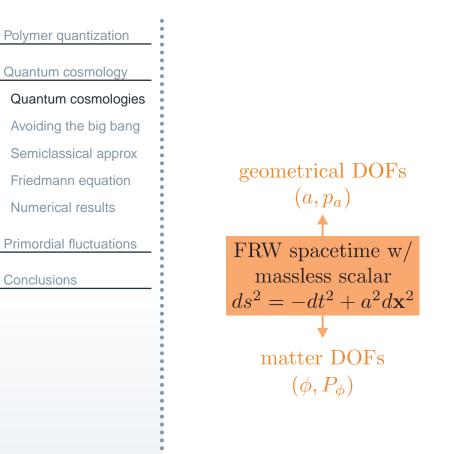
Polymer quantizationQuantum cosmologyQuantum cosmologiesAvoiding the big bangSemiclassical approxFriedmann equationNumerical resultsPrimordial fluctuationsConclusions

we want to apply polymer methods to FRW models... what has been done before?



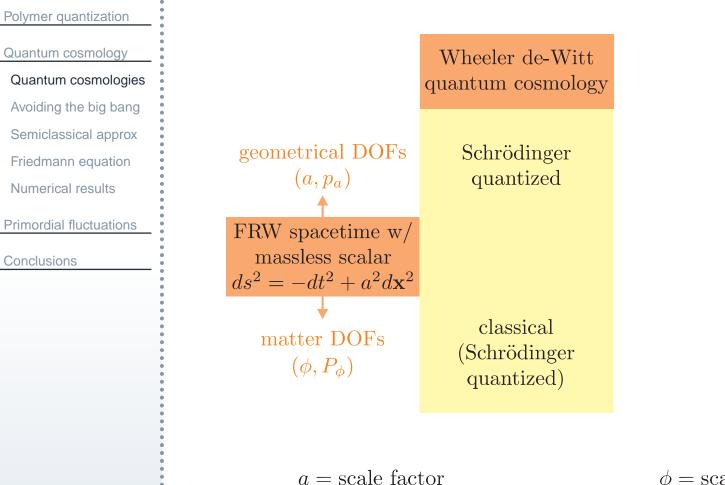
Conclusions

FRW spacetime w/ massless scalar $ds^2 = -dt^2 + a^2 d\mathbf{x}^2$



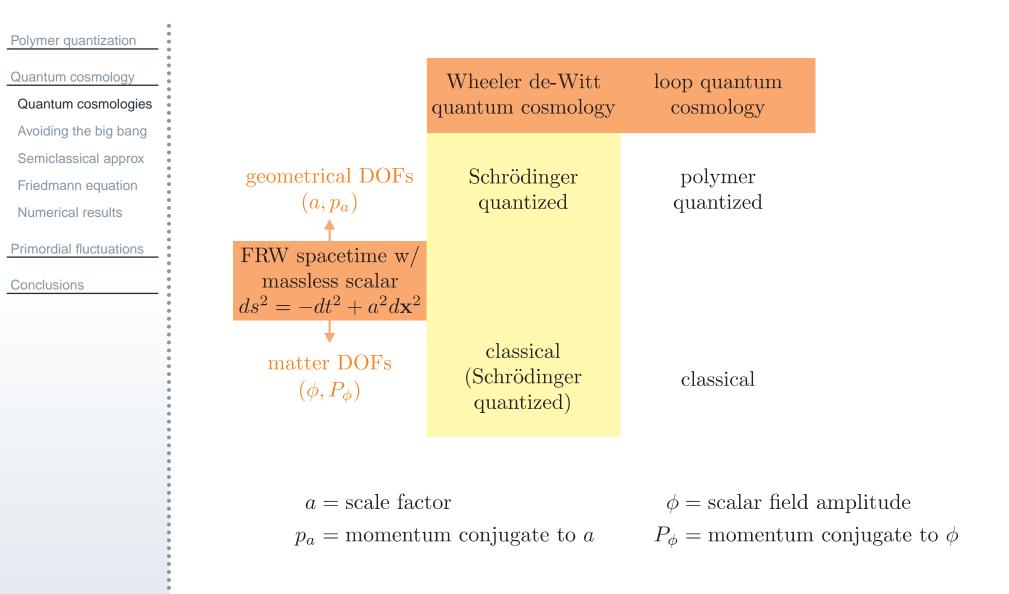
a = scale factor

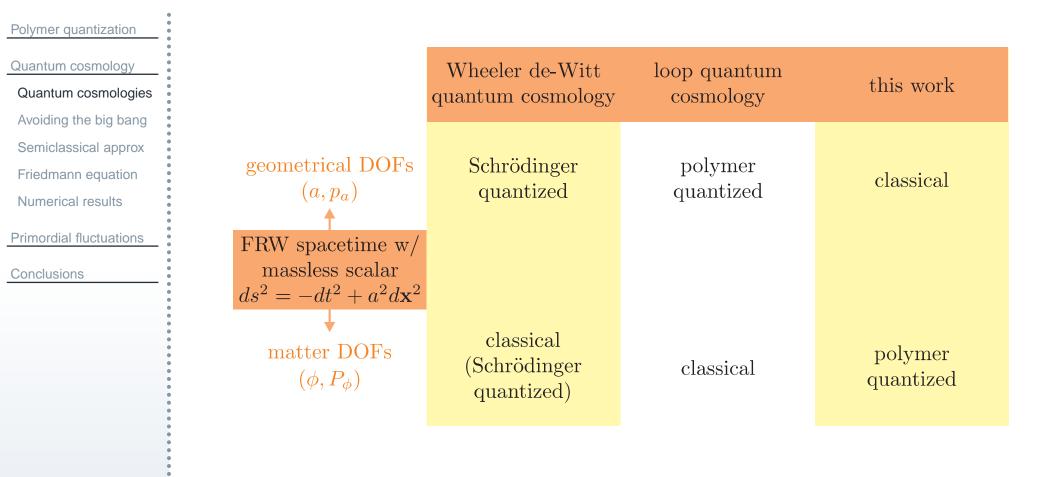
 $\phi = \text{scalar field amplitude}$ $P_{\phi} =$ momentum conjugate to ϕ $p_a =$ momentum conjugate to a



 $p_a =$ momentum conjugate to a

 $\phi = \text{scalar field amplitude}$ $P_{\phi} = \text{momentum conjugate to } \phi$



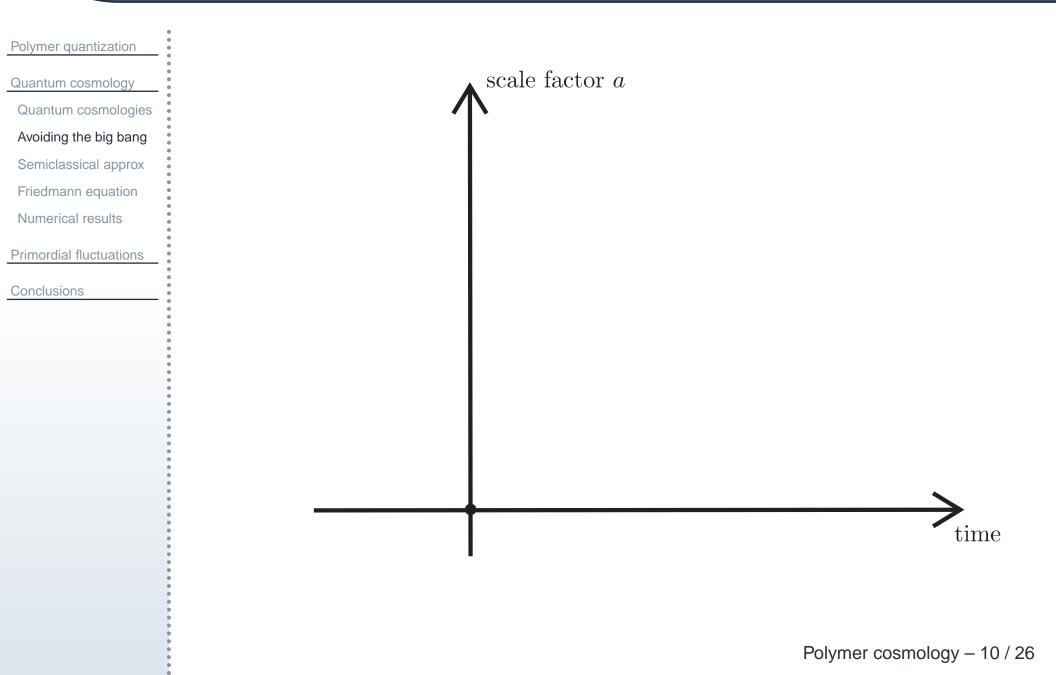


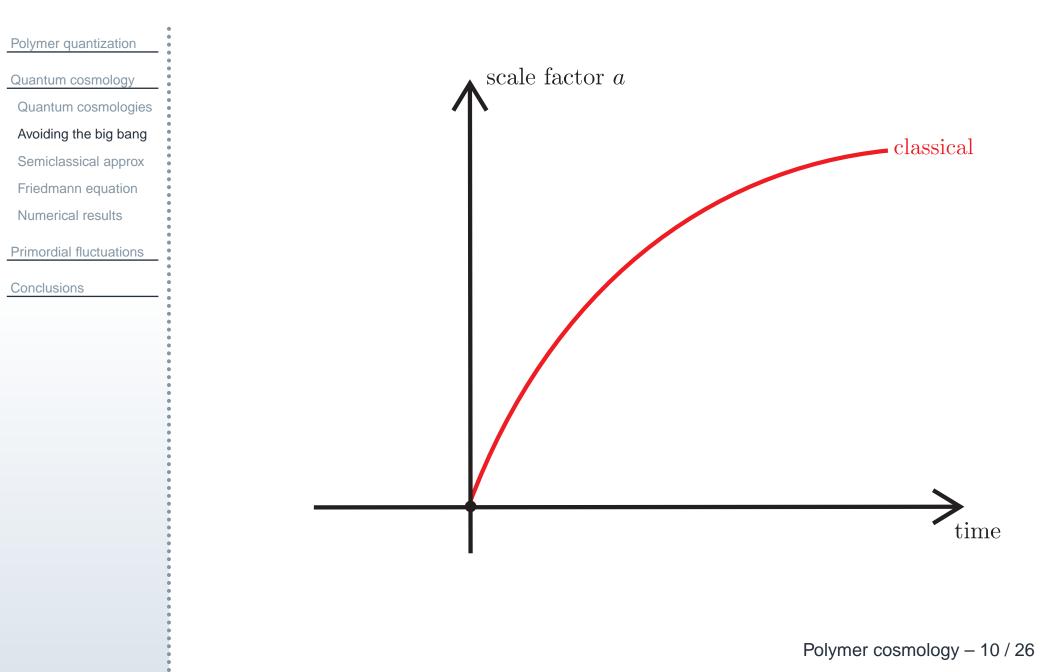
a = scale factor	$\phi = \text{scalar field amplitude}$
$p_a = $ momentum conjugate to a	$P_{\phi} = $ momentum conjugate to ϕ

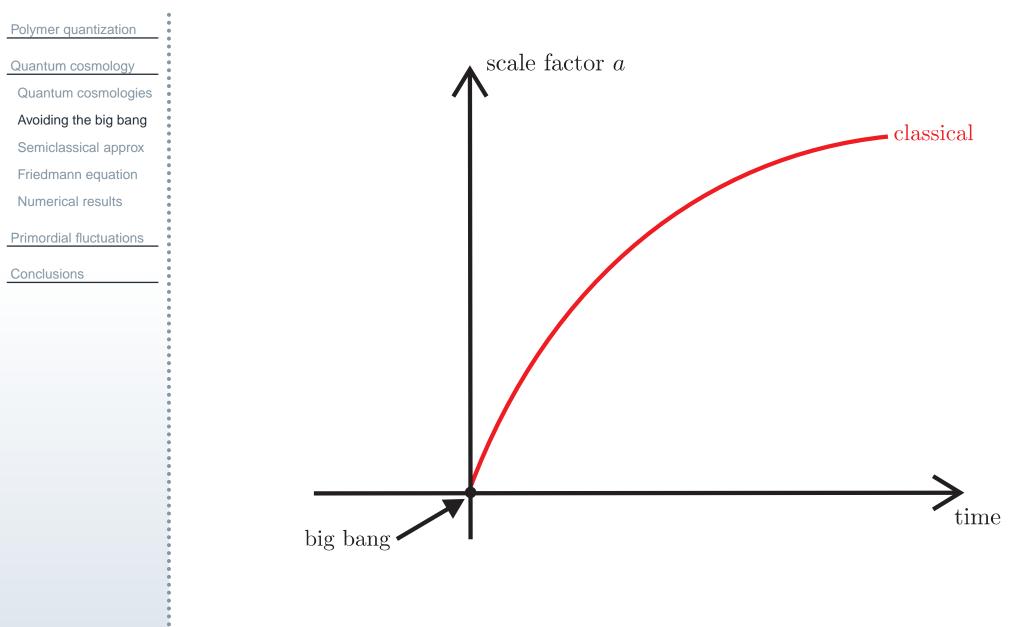
Polymer quantization Quantum cosmology Quantum cosmologies Avoiding the big bang Semiclassical approx Friedmann equation Numerical results Primordial fluctuations

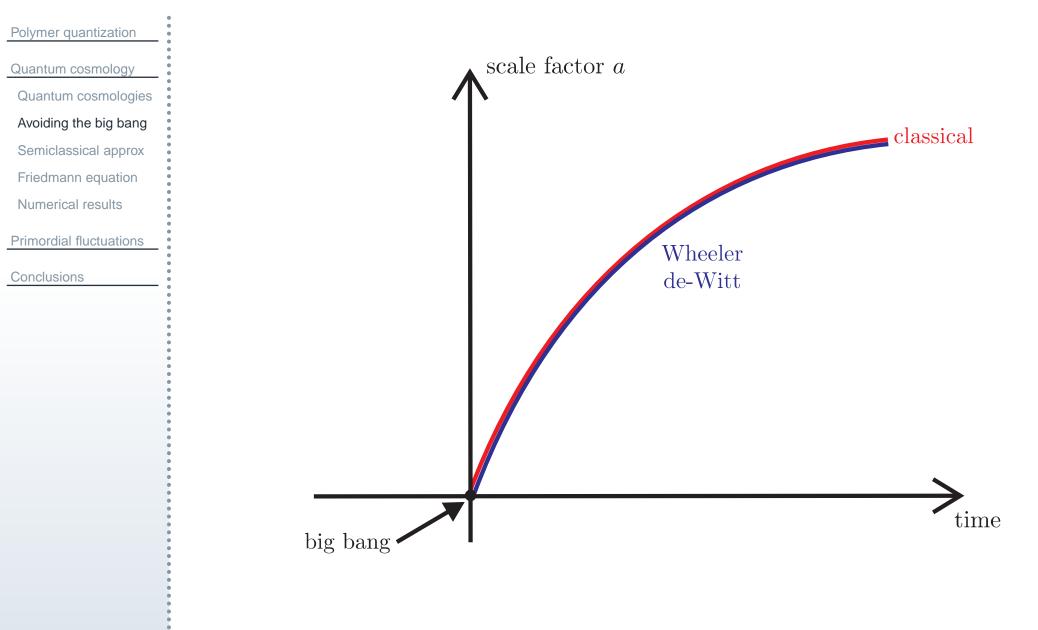
Conclusions

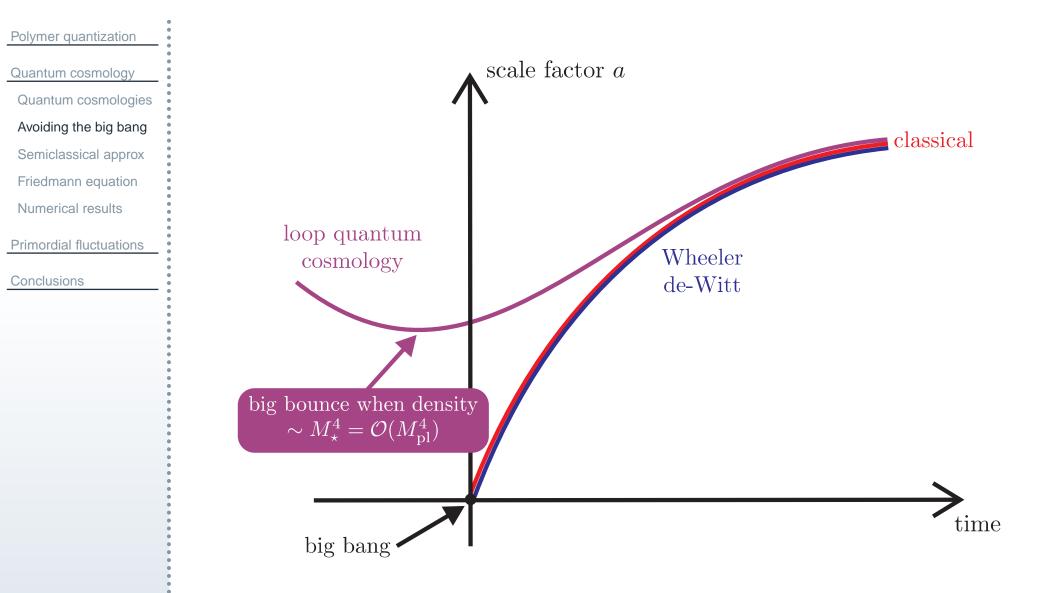
what are the effective cosmological dynamics for prior quantum cosmologies?







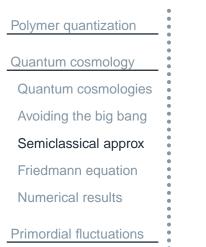




Polymer quantization Quantum cosmology Quantum cosmologies Avoiding the big bang Semiclassical approx Friedmann equation Numerical results Primordial fluctuations

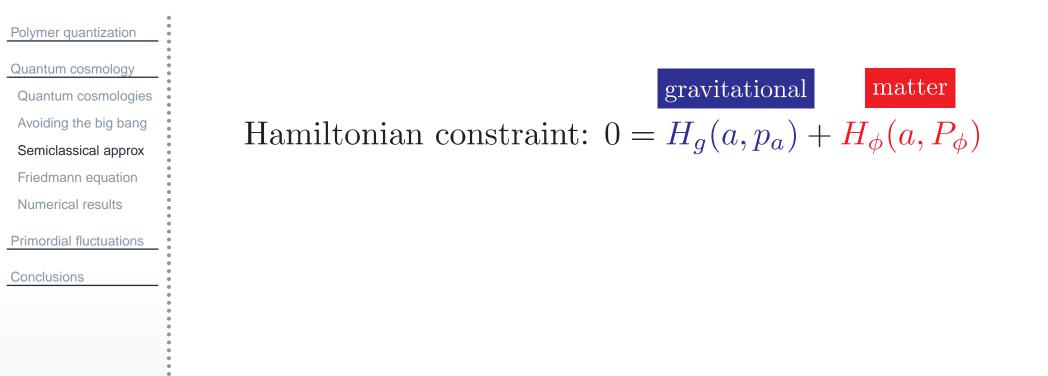
```
Conclusions
```

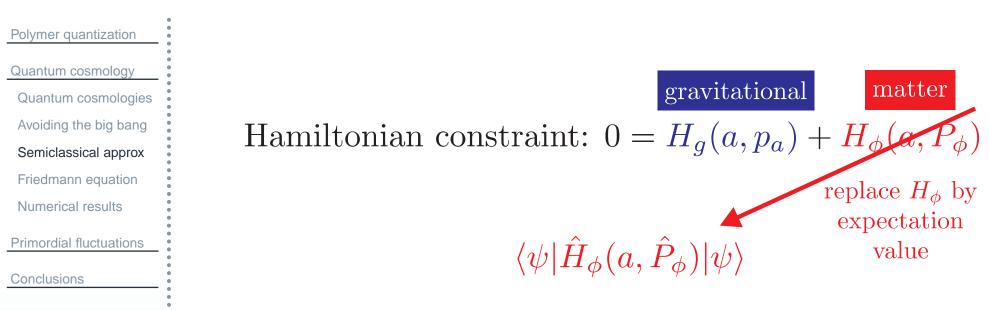
to derive cosmological dynamics with polymer matter DOFs, we use a semiclassical approximation...

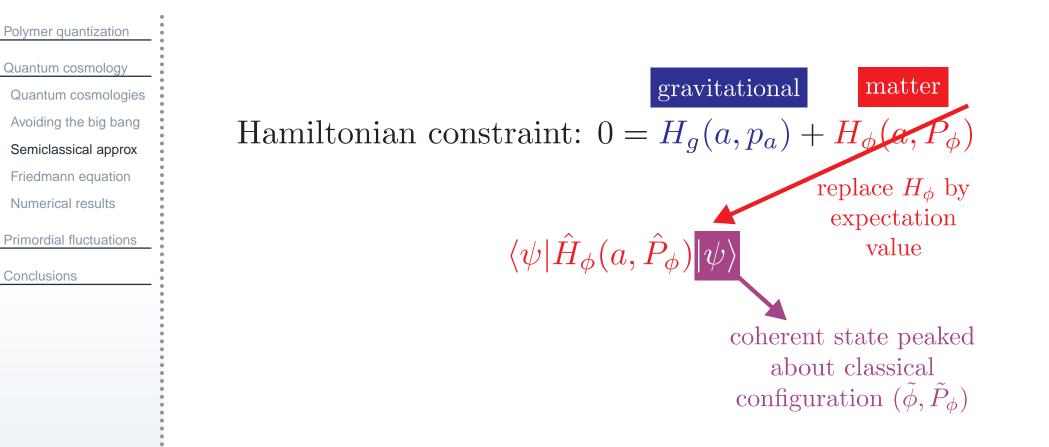


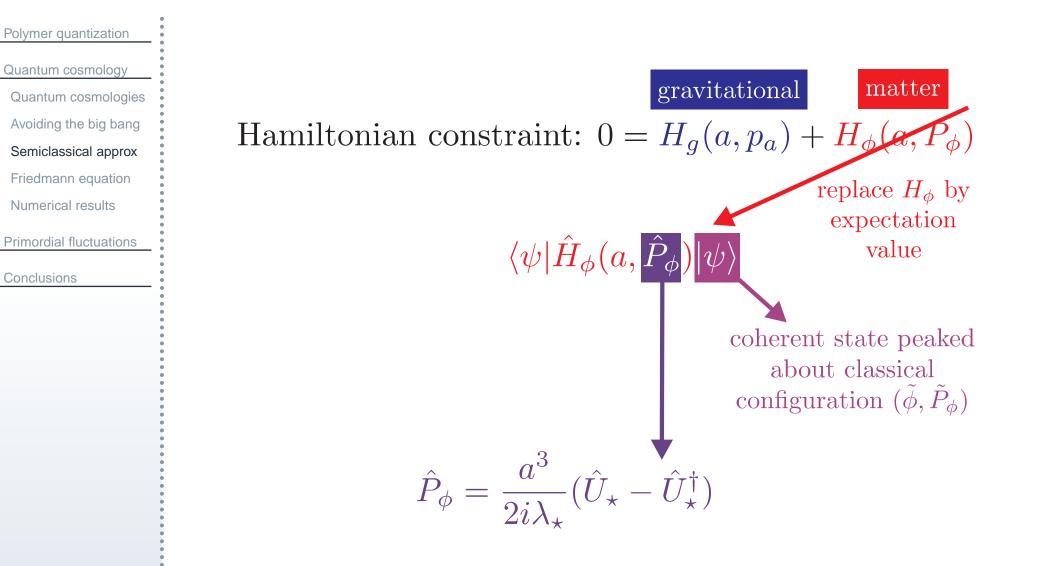
Conclusions

Hamiltonian constraint: $0 = H_g(a, p_a) + H_{\phi}(a, P_{\phi})$











Polymer quantization Quantum cosmology Quantum cosmologies Avoiding the big bang

Semiclassical approx

Friedmann equation

Numerical results

Primordial fluctuations

Conclusions

semiclassical Hamiltonian constraint \rightarrow effective Friedmann equation

$$H^2 = \frac{\dot{a}^2}{a^2} = \frac{1}{3M_{\rm pl}^2} \rho_{\rm eff}$$

Polymer quantization Quantum cosmology Quantum cosmologies Avoiding the big bang

Semiclassical approx

Friedmann equation

Numerical results

Primordial fluctuations

Conclusions

semiclassical Hamiltonian constraint \rightarrow effective Friedmann equation

$$H^{2} = \frac{\dot{a}^{2}}{a^{2}} = \frac{1}{3M_{\rm pl}^{2}}\rho_{\rm eff} \qquad \rho_{\rm eff} = \frac{1}{4}M_{\star}^{4}[1 - e^{-\Theta^{2}/\Sigma^{2}}\cos 2\Theta]$$

Polymer quantization Quantum cosmology Quantum cosmologies Avoiding the big bang

Semiclassical approx

Friedmann equation

Numerical results

Primordial fluctuations

Conclusions

semiclassical Hamiltonian constraint \rightarrow effective Friedmann equation

$$H^{2} = \frac{\dot{a}^{2}}{a^{2}} = \frac{1}{3M_{\rm pl}^{2}}\rho_{\rm eff} \qquad \rho_{\rm eff} = \frac{1}{4}M_{\star}^{4}[1 - e^{-\Theta^{2}/\Sigma^{2}}\cos 2\Theta]$$

$$\frac{1}{2}\Theta^2 = \frac{\text{classical matter density } \rho_{\text{cl}}}{M_{\star}^4} \propto a^{-6}$$

Polymer quantization Quantum cosmology Quantum cosmologies Avoiding the big bang Semiclassical approx

Friedmann equation

Numerical results

Primordial fluctuations

Conclusions

semiclassical Hamiltonian constraint \rightarrow effective Friedmann equation

$$H^{2} = \frac{\dot{a}^{2}}{a^{2}} = \frac{1}{3M_{\rm pl}^{2}}\rho_{\rm eff} \qquad \rho_{\rm eff} = \frac{1}{4}M_{\star}^{4}[1 - e^{-\Theta^{2}/\Sigma^{2}}\cos 2\Theta]$$

$$\frac{1}{2}\Theta^2 = \frac{\text{classical matter density }\rho_{\text{cl}}}{M_{\star}^4} \propto a^{-6}$$

 Σ = width of coherent state = constant

Polymer quantization Quantum cosmology Quantum cosmologies Avoiding the big bang Semiclassical approx Friedmann equation

Numerical results

Primordial fluctuations

Conclusions

semiclassical Hamiltonian constraint \rightarrow effective Friedmann equation

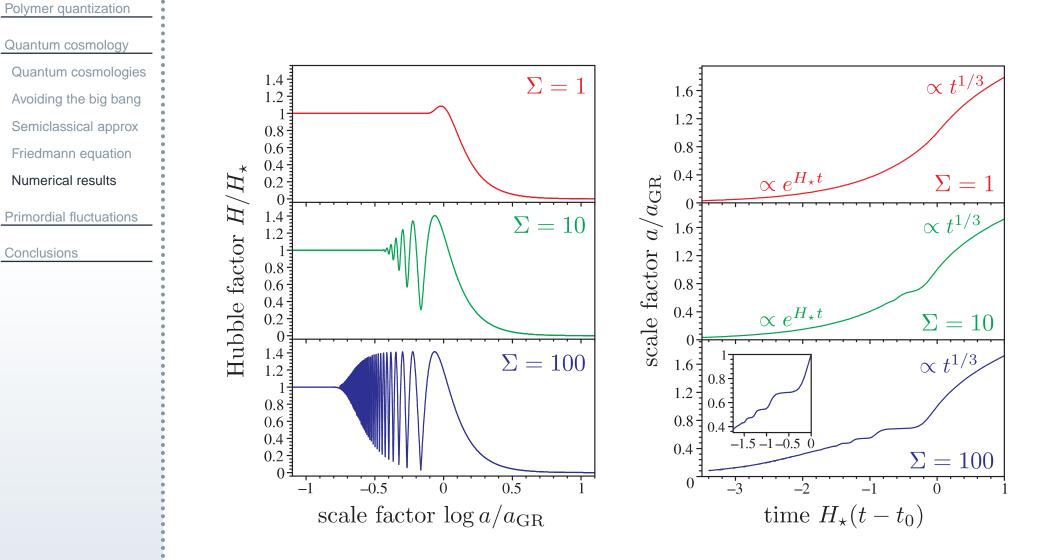
$$H^{2} = \frac{\dot{a}^{2}}{a^{2}} = \frac{1}{3M_{\rm pl}^{2}}\rho_{\rm eff} \qquad \rho_{\rm eff} = \frac{1}{4}M_{\star}^{4}[1 - e^{-\Theta^{2}/\Sigma^{2}}\cos 2\Theta]$$

$$\frac{1}{2}\Theta^2 = \frac{\text{classical matter density }\rho_{\text{cl}}}{M_{\star}^4} \propto a^{-6}$$

 Σ = width of coherent state = constant

low density $\rho_{\rm cl} \lesssim M_{\star}^4 \Rightarrow \rho_{\rm eff} \sim \rho_{\rm cl}$ (recover classical) high density $\rho_{\rm cl} \gtrsim \Sigma^2 M_{\star}^4 \Rightarrow \rho_{\rm eff} \sim \text{constant}$ (de Sitter inflation)

Numerical results



Polymer quantization	
Quantum cosmology	
Primordial fluctuations	
The problem	
Quantization algorithms	
Schrödinger equations	
Effective equations	
Formal solution	
Initial conditions	
Power spectrum	
Semi-analytic results	
Observational	

consequences

Conclusions

Primordial fluctuations

The problem

Polymer quantization Quantum cosmology Primordial fluctuations The problem Quantization algorithms Schrödinger equations Effective equations Formal solution Initial conditions Power spectrum Semi-analytic results Observational consequences

Conclusions

here we consider an inhomogeneous massless scalar in a de Sitter background

$$ds^{2} = \begin{cases} -dt^{2} + a^{2}d\mathbf{x}^{2} & a = \exp(Ht) \\ a^{2}(-d\eta^{2} + d\mathbf{x}^{2}) & a = -(H\eta)^{-1} \end{cases}$$
$$H_{\phi} = \int d^{3}x \, a^{3} \left[\frac{1}{2a^{6}}\pi^{2} + \frac{1}{2a^{2}}(\nabla\phi)^{2} \right]$$

The problem

Polymer quantization Quantum cosmology Primordial fluctuations The problem Quantization algorithms Schrödinger equations Schrödinger equations Effective equations Formal solution Initial conditions Power spectrum Semi-analytic results Observational consequences

Conclusions

here we consider an inhomogeneous massless scalar in a de Sitter background

$$ds^{2} = \begin{cases} -dt^{2} + a^{2}d\mathbf{x}^{2} & a = \exp(Ht) \\ a^{2}(-d\eta^{2} + d\mathbf{x}^{2}) & a = -(H\eta)^{-1} \end{cases}$$
$$H_{\phi} = \int d^{3}x \, a^{3} \left[\frac{1}{2a^{6}}\pi^{2} + \frac{1}{2a^{2}}(\nabla\phi)^{2} \right]$$

goal: power spectrum of fluctuations $\mathcal{P}_{\phi}(k)$ produced during inflation assuming polymer quantization

The problem

Polymer quantization Quantum cosmology Primordial fluctuations The problem Quantization algorithms Schrödinger equations Effective equations Effective equations Formal solution Initial conditions Power spectrum Semi-analytic results Observational consequences

Conclusions

here we consider an inhomogeneous massless scalar in a de Sitter background

$$ds^{2} = \begin{cases} -dt^{2} + a^{2}d\mathbf{x}^{2} & a = \exp(Ht) \\ a^{2}(-d\eta^{2} + d\mathbf{x}^{2}) & a = -(H\eta)^{-1} \end{cases}$$
$$H_{\phi} = \int d^{3}x \, a^{3} \left[\frac{1}{2a^{6}}\pi^{2} + \frac{1}{2a^{2}}(\nabla\phi)^{2} \right]$$

- **goal:** power spectrum of fluctuations $\mathcal{P}_{\phi}(k)$ produced during inflation assuming polymer quantization
- **problem:** polymer QFT poorly understood

The problem

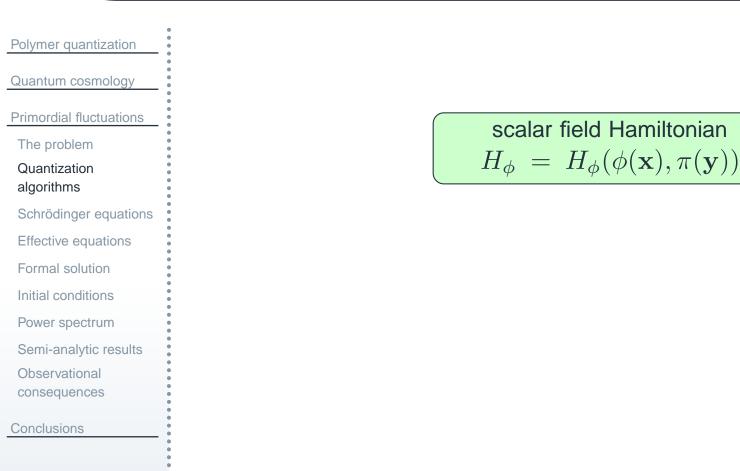
Polymer quantization Quantum cosmology Primordial fluctuations The problem Quantization algorithms Schrödinger equations Effective equations Formal solution Initial conditions Power spectrum Semi-analytic results Observational consequences

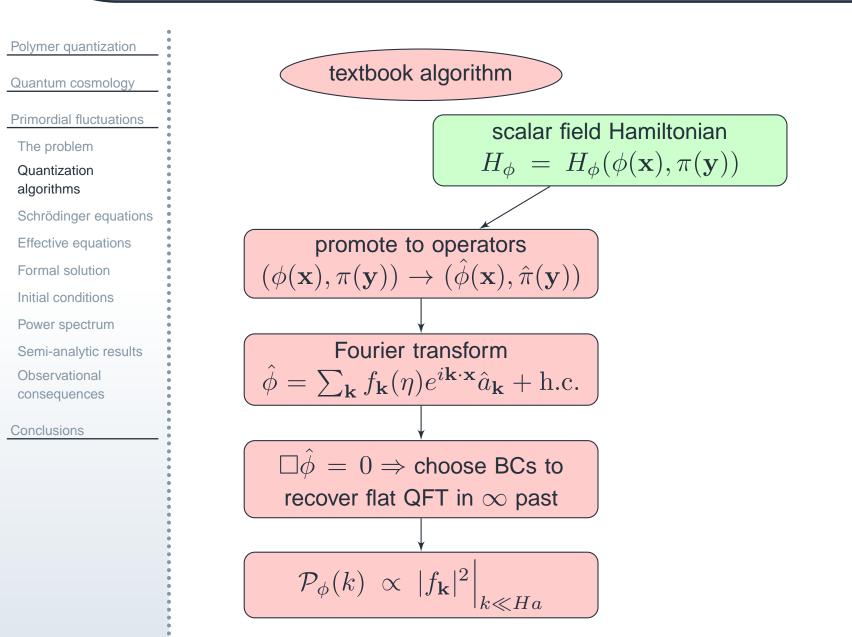
Conclusions

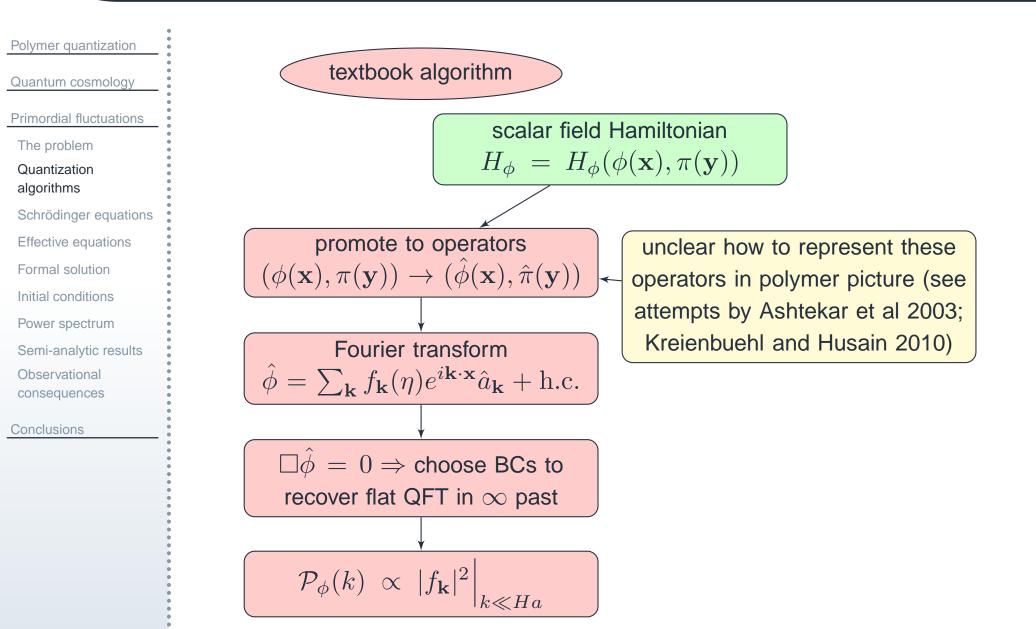
here we consider an inhomogeneous massless scalar in a de Sitter background

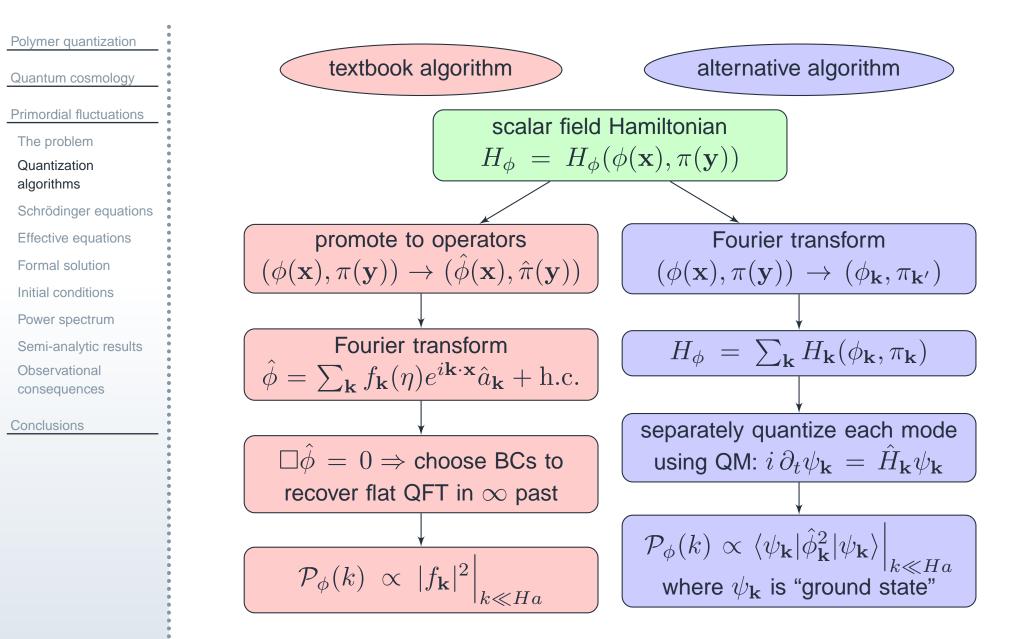
$$ds^{2} = \begin{cases} -dt^{2} + a^{2}d\mathbf{x}^{2} & a = \exp(Ht) \\ a^{2}(-d\eta^{2} + d\mathbf{x}^{2}) & a = -(H\eta)^{-1} \end{cases}$$
$$H_{\phi} = \int d^{3}x \, a^{3} \left[\frac{1}{2a^{6}}\pi^{2} + \frac{1}{2a^{2}}(\nabla\phi)^{2} \right]$$

- **goal:** power spectrum of fluctuations $\mathcal{P}_{\phi}(k)$ produced during inflation assuming polymer quantization
- **problem:** polymer QFT poorly understood
- N.B.: no a priori relation between H and polymer energy scale M_{\star} assumed









Time dependent Schrödinger equations

Polymer quantizationQuantum cosmologyPrimordial fluctuationsThe problemQuantizationalgorithmsSchrödinger equationsEffective equationsFormal solutionInitial conditionsPower spectrumSemi-analytic resultsObservationalconsequences

Conclusions

"Fourier transform then quantize" algorithm leads to following Schrödinger equations (recall $a = \exp Ht$):

standard quantization:

$$i\frac{\partial}{\partial t}\psi(t,\pi_{\mathbf{k}}) = \left[\frac{1}{2a^3}\pi_{\mathbf{k}}^2 - \frac{ak^2}{2}\frac{\partial^2}{\partial\pi_{\mathbf{k}}^2}\right]\psi(t,\pi_{\mathbf{k}})$$

polymer quantization: $i\frac{\partial}{\partial t}\psi(t,\pi_{\mathbf{k}}) = \left[\frac{1}{2\lambda}\sin^2\left(\frac{\lambda\pi_{\mathbf{k}}}{a^{3/2}}\right) - \frac{ak^2}{2}\frac{\partial^2}{\partial\pi_{\mathbf{k}}^2}\right]\psi(t,\pi_{\mathbf{k}})$

Time dependent Schrödinger equations

Polymer quantizationQuantum cosmologyPrimordial fluctuationsThe problemQuantizationalgorithmsSchrödinger equationsEffective equationsFormal solutionInitial conditionsPower spectrumSemi-analytic resultsObservationalconsequences

Conclusions

"Fourier transform then quantize" algorithm leads to following Schrödinger equations (recall $a = \exp Ht$):

standard quantization:

$$i\frac{\partial}{\partial t}\psi(t,\pi_{\mathbf{k}}) = \left[\frac{1}{2a^3}\pi_{\mathbf{k}}^2 - \frac{ak^2}{2}\frac{\partial^2}{\partial\pi_{\mathbf{k}}^2}\right]\psi(t,\pi_{\mathbf{k}})$$

polymer quantization: $i\frac{\partial}{\partial t}\psi(t,\pi_{\mathbf{k}}) = \left[\frac{1}{2\lambda}\sin^2\left(\frac{\lambda\pi_{\mathbf{k}}}{a^{3/2}}\right) - \frac{ak^2}{2}\frac{\partial^2}{\partial\pi_{\mathbf{k}}^2}\right]\psi(t,\pi_{\mathbf{k}})$

following transformations and re-scaling make things simpler:

$$\eta = -\frac{1}{Ha}, \quad y = -k\eta \sqrt{\frac{H^2}{k^3}}\pi_{\mathbf{k}},$$
$$\psi(t, \pi_k) = \left(\frac{H^2}{k^3}\right)^{1/4} \sqrt{-k\eta}\Psi(\eta, y) \exp\left(-i\frac{y^2}{2k\eta}\right)$$

Polymer cosmology - 17 / 26

 Polymer quantization
 Af

 Quantum cosmology
 Sp

 Primordial fluctuations
 Sp

 The problem
 Quantization

 Quantization
 algorithms

 Schrödinger equations
 F

 Formal solution
 Initial conditions

 Power spectrum
 Semi-analytic results

 Observational
 consequences

Conclusions

After transformations and re-scalings, PDEs governing power spectrum are:

standard quantization: $i\frac{\partial\Psi}{\partial\eta} = \frac{k}{2}\left[-\frac{\partial^2}{\partial y^2} + y^2\right]\Psi$

Polymer quantization Quantum cosmology **Primordial fluctuations** The problem Quantization algorithms Schrödinger equations Effective equations Formal solution Initial conditions Power spectrum Semi-analytic results Observational consequences Conclusions

After transformations and re-scalings, PDEs governing power spectrum are:

standard quantization: $i\frac{\partial\Psi}{\partial\eta} = \frac{k}{2}\left[-\frac{\partial^2}{\partial y^2} + y^2\right]\Psi$

ordinary simple harmonic oscillator

Polymer quantization Quantum cosmology **Primordial fluctuations** The problem Quantization algorithms Schrödinger equations Effective equations Formal solution Initial conditions Power spectrum Semi-analytic results Observational consequences Conclusions

After transformations and re-scalings, PDEs governing power spectrum are:

standard quantization: $i\frac{\partial\Psi}{\partial\eta} = \frac{k}{2}\left[-\frac{\partial^2}{\partial y^2} + y^2\right]\Psi$

ordinary simple harmonic oscillator

 \Box ground state unambiguous \Rightarrow gives Bunch-Davies vacuum

Polymer quantization Quantum cosmology **Primordial fluctuations** The problem Quantization algorithms Schrödinger equations Effective equations Formal solution Initial conditions Power spectrum Semi-analytic results Observational consequences Conclusions

After transformations and re-scalings, PDEs governing power spectrum are:

standard quantization: $i\frac{\partial\Psi}{\partial\eta} = \frac{k}{2}\left[-\frac{\partial^2}{\partial y^2} + y^2\right]\Psi$

□ ordinary simple harmonic oscillator

 \Box ground state unambiguous \Rightarrow gives Bunch-Davies vacuum

polymer quantization:
$$i\frac{\partial\Psi}{\partial\eta} = \frac{k}{2}\left[-\frac{\partial^2}{\partial y^2} + \frac{\sin^2(\sqrt{g}y)}{g}\right]\Psi$$

Polymer quantization Quantum cosmology Primordial fluctuations The problem Quantization algorithms Schrödinger equations Effective equations Formal solution Initial conditions Power spectrum Semi-analytic results **Observational** consequences Conclusions

After transformations and re-scalings, PDEs governing power spectrum are:

standard quantization: $i\frac{\partial\Psi}{\partial\eta} = \frac{k}{2}\left[-\frac{\partial^2}{\partial y^2} + y^2\right]\Psi$

□ ordinary simple harmonic oscillator

 \Box ground state unambiguous \Rightarrow gives Bunch-Davies vacuum

polymer quantization:
$$i\frac{\partial\Psi}{\partial\eta} = \frac{k}{2}\left[-\frac{\partial^2}{\partial y^2} + \frac{\sin^2(\sqrt{g}y)}{g}\right]\Psi$$

 $\square \quad \text{``polymer coupling'': } g = \frac{k}{M_{\star}a} = \frac{\text{physical wavenumber}}{\text{polymer energy scale}}$

Polymer quantization Quantum cosmology Primordial fluctuations The problem Quantization algorithms Schrödinger equations Effective equations Formal solution Initial conditions Power spectrum Semi-analytic results Observational consequences Conclusions

After transformations and re-scalings, PDEs governing power spectrum are:

standard quantization: $i\frac{\partial\Psi}{\partial\eta} = \frac{k}{2}\left[-\frac{\partial^2}{\partial y^2} + y^2\right]\Psi$

ordinary simple harmonic oscillator

 \Box ground state unambiguous \Rightarrow gives Bunch-Davies vacuum

polymer quantization:
$$i\frac{\partial\Psi}{\partial\eta} = \frac{k}{2}\left[-\frac{\partial^2}{\partial y^2} + \frac{\sin^2(\sqrt{g}y)}{g}\right]\Psi$$

□ "polymer coupling": $g = \frac{k}{M_{\star}a} = \frac{\text{physical wavenumber}}{\text{polymer energy scale}}$

 \Box late time limit $g \rightarrow 0$: recover standard wave equation

Polymer quantization Quantum cosmology Primordial fluctuations The problem Quantization algorithms Schrödinger equations Effective equations Formal solution Initial conditions Power spectrum Semi-analytic results Observational consequences Conclusions

After transformations and re-scalings, PDEs governing power spectrum are:

standard quantization: $i\frac{\partial\Psi}{\partial\eta} = \frac{k}{2}\left[-\frac{\partial^2}{\partial y^2} + y^2\right]\Psi$

□ ordinary simple harmonic oscillator

 \Box ground state unambiguous \Rightarrow gives Bunch-Davies vacuum

polymer quantization:
$$i\frac{\partial\Psi}{\partial\eta} = \frac{k}{2}\left[-\frac{\partial^2}{\partial y^2} + \frac{\sin^2(\sqrt{g}y)}{g}\right]\Psi$$

□ "polymer coupling": $g = \frac{k}{M_{\star}a} = \frac{\text{physical wavenumber}}{\text{polymer energy scale}}$

 \Box late time limit $g \rightarrow 0$: recover standard wave equation

□ time dependent potential makes ground state ambiguous

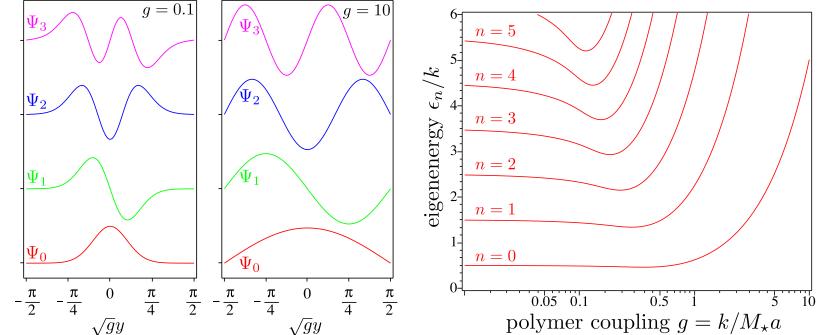
Formal solution of polymer Schrödinger equation

Polymer quantization Quantum cosmology **Primordial fluctuations** The problem Quantization algorithms Schrödinger equations Effective equations Formal solution Initial conditions Power spectrum Semi-analytic results Observational consequences Conclusions

wavefunction ansatz:
$$\Psi(\eta, y) = \sum_{n=0}^{\infty} c_n(\eta) e^{i \int \epsilon_n(\eta) d\eta} \Psi_n(\eta, y)$$

 Ψ_n are instantaneous energy eigenfunctions:

 $\frac{1}{2}k\left[-\partial_y^2 + g^{-1}\sin^2(\sqrt{g}y)\right]\Psi_n(\eta, y) = \epsilon_n(\eta)\Psi_n(\eta, y)$



Formal solution of polymer Schrödinger equation

Polymer quantization Quantum cosmology Primordial fluctuations The problem Quantization algorithms Schrödinger equations Effective equations Formal solution Initial conditions Power spectrum Semi-analytic results Observational consequences Conclusions

wavefunction ansatz: $\Psi(\eta, y) = \sum_{n=0}^{\infty} c_n(\eta) e^{i \int \epsilon_n(\eta) d\eta} \Psi_n(\eta, y)$

 Ψ_n are instantaneous energy eigenfunctions:

 $\frac{1}{2}k\left[-\partial_y^2 + g^{-1}\sin^2(\sqrt{g}y)\right]\Psi_n(\eta, y) = \epsilon_n(\eta)\Psi_n(\eta, y)$

subbing ansatz into Schrödinger equation gives:

$$\frac{d}{dg}\mathbf{c} = \mathbf{A}\mathbf{c}, \quad \mathbf{c} = \begin{bmatrix} c_0 \\ c_1 \\ \vdots \end{bmatrix}, \quad \mathbf{A} = \begin{bmatrix} a_{00} & a_{01} & \cdots \\ a_{10} & a_{11} \\ \vdots & \ddots \end{bmatrix}$$

where $a_{nm} = a_{nm}(\eta)$ are matrix elements in the $\{\Psi_n\}$ basis

Formal solution of polymer Schrödinger equation

Polymer quantizationQuantum cosmologyPrimordial fluctuationsThe problemQuantizationalgorithmsSchrödinger equationsEffective equationsEffective equationsFormal solutionInitial conditionsPower spectrumSemi-analytic resultsObservationalconsequences

Conclusions

- wavefunction ansatz: $\Psi(\eta, y) = \sum_{n=0}^{\infty} c_n(\eta) e^{i \int \epsilon_n(\eta) d\eta} \Psi_n(\eta, y)$
- Ψ_n are instantaneous energy eigenfunctions:

 $\frac{1}{2}k\left[-\partial_y^2 + g^{-1}\sin^2(\sqrt{g}y)\right]\Psi_n(\eta, y) = \epsilon_n(\eta)\Psi_n(\eta, y)$

subbing ansatz into Schrödinger equation gives:

$$\frac{d}{dg}\mathbf{c} = \mathbf{A}\mathbf{c}, \quad \mathbf{c} = \begin{bmatrix} c_0 \\ c_1 \\ \vdots \end{bmatrix}, \quad \mathbf{A} = \begin{bmatrix} a_{00} & a_{01} & \cdots \\ a_{10} & a_{11} \\ \vdots & \ddots \end{bmatrix}$$

where $a_{nm} = a_{nm}(\eta)$ are matrix elements in the $\{\Psi_n\}$ basis

I solve numerically: $\mathbf{c}(\eta = 0)$ gives final quantum state and hence power spectrum $\mathcal{P}_{\phi}(k)$

Polymer quantization	
Quantum cosmology	
Primordial fluctuations	
The problem	
Quantization algorithms	
Schrödinger equations	
Effective equations	
Formal solution	
Initial conditions	
Power spectrum	
Semi-analytic results	
Observational consequences	

Conclusions

suppose we prepare a given ${\bf k}$ mode in the ground state at an initial time

Polymer quantization	:
Quantum cosmology	
Primordial fluctuations	•
The problem	•
Quantization algorithms	•
Schrödinger equations	•
Effective equations	•
Formal solution	•
Initial conditions	•
Power spectrum	•
Semi-analytic results	:
Observational	•
consequences	
Conclusions	•

- suppose we prepare a given ${\bf k}$ mode in the ground state at an initial time
- □ **standard quantization:** it will stay in the ground state

Polymer quantization
Quantum cosmology
Primordial fluctuations
The problem
Quantization algorithms
Schrödinger equations
Effective equations
Formal solution
Initial conditions
Power spectrum
Semi-analytic results
Observational
consequences
Conclusions

suppose we prepare a given ${f k}$ mode in the ground state at an initial time

- □ **standard quantization:** it will stay in the ground state
- **polymer quantization:** it will not stay in the ground state

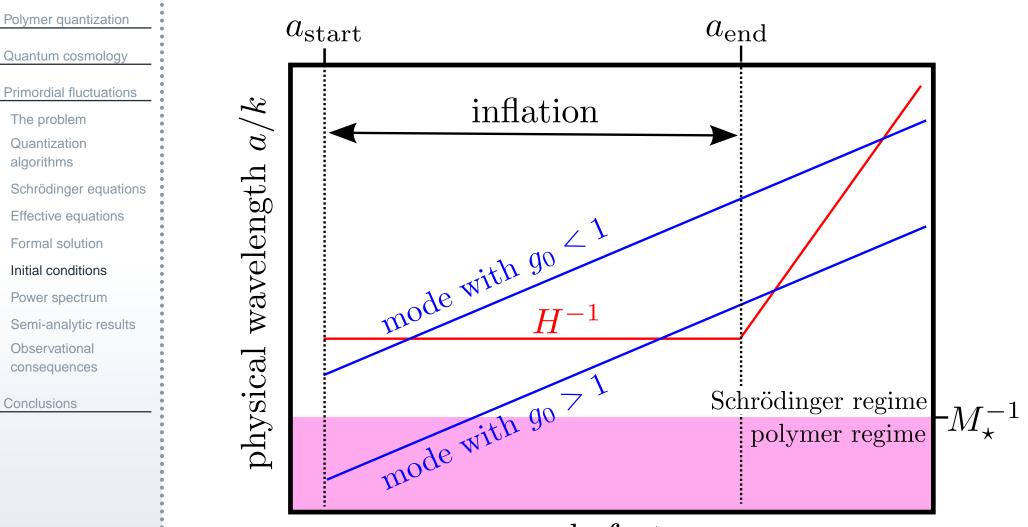
Polymer quantization Quantum cosmology **Primordial fluctuations** The problem Quantization algorithms Schrödinger equations Effective equations Formal solution Initial conditions Power spectrum Semi-analytic results Observational consequences Conclusions

- suppose we prepare a given ${\bf k}$ mode in the ground state at an initial time
- □ **standard quantization:** it will stay in the ground state
- **polymer quantization:** it will not stay in the ground state
- we assume each mode is in ground state at the start of inflation (*c.f.* Martin and Brandenberger 2001)

Polymer quantizationQuantum cosmologyPrimordial fluctuationsThe problemQuantizationalgorithmsSchrödinger equationsEffective equationsFormal solutionInitial conditionsPower spectrumSemi-analytic resultsObservationalconsequences

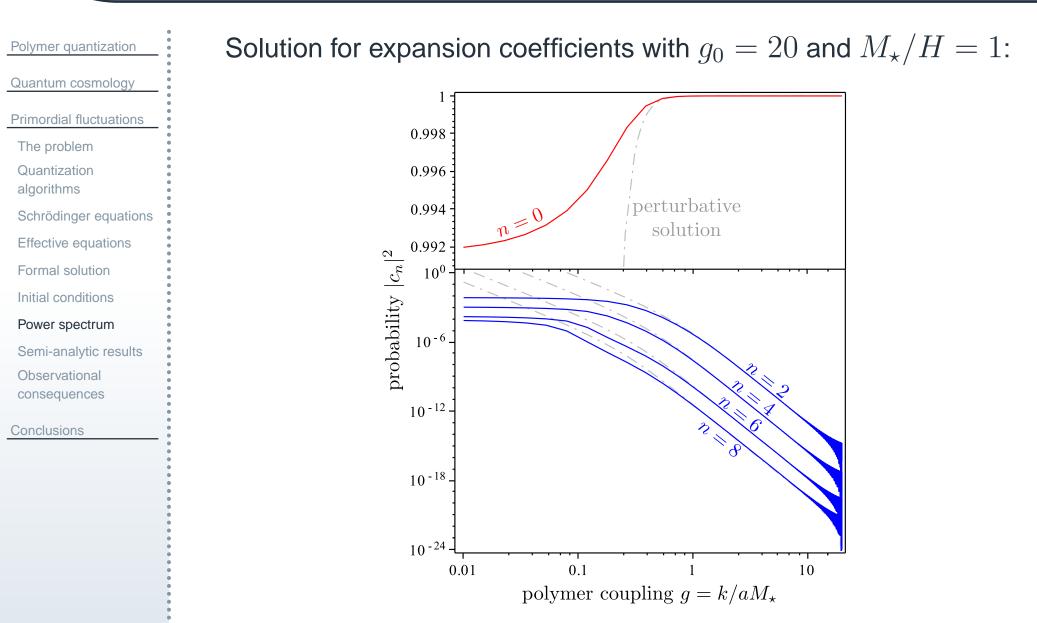
Conclusions

- suppose we prepare a given ${\bf k}$ mode in the ground state at an initial time
 - **standard quantization:** it will stay in the ground state
 - **polymer quantization:** it will not stay in the ground state
- we assume each mode is in ground state at the start of inflation (*c.f.* Martin and Brandenberger 2001)
- final quantum state determined by polymer coupling at start of inflation $g_0 = k/k_{\star}$
 - □ k_{\star} = present day wavenumber of a mode with physical wavelength M_{\star}^{-1} at the start of inflation

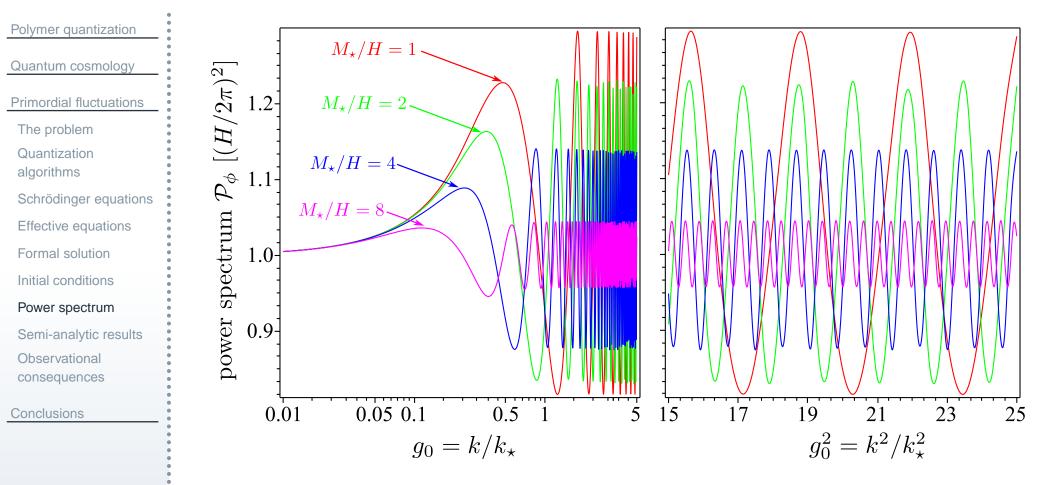


scale factor a

Results for the power spectrum



Results for the power spectrum



recover standard result $\mathcal{P}_{\phi}=\mathcal{P}_{0}=(H/2\pi)^{2}$ for $g_{0}\ll1$

polymer effects vanish for $M_\star/H o \infty$

Semi-analytic results

Polymer quantizationQuantum cosmologyPrimordial fluctuationsThe problemQuantizationalgorithmsSchrödinger equationsEffective equationsFormal solutionInitial conditionsPower spectrumSemi-analytic resultsObservationalconsequences

Conclusions

perturbation theory/fitting functions to numeric results lead to approximate power spectrum:

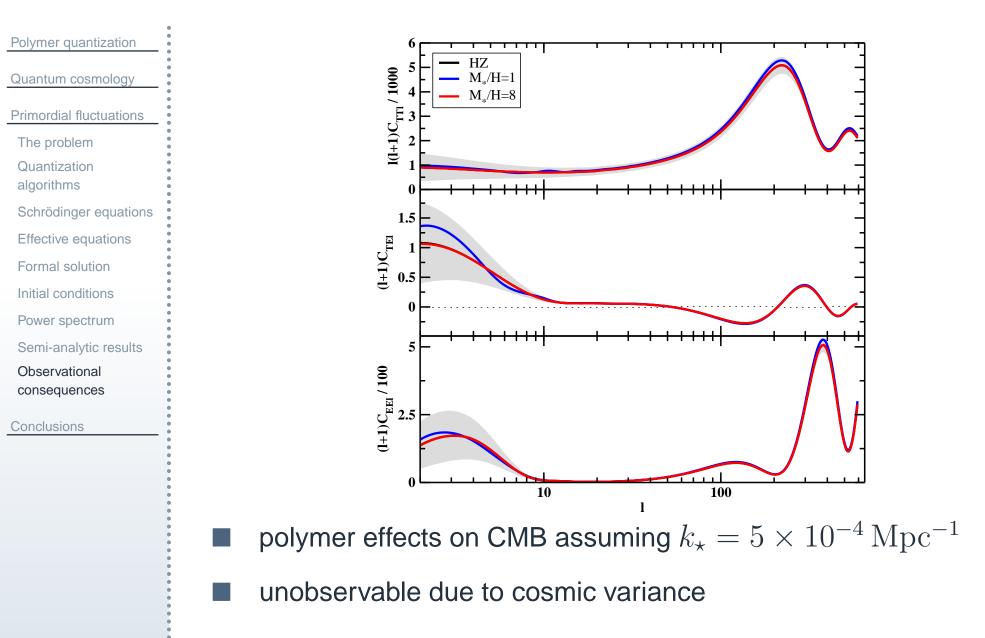
$$\frac{\mathcal{P}_{\phi}}{\mathcal{P}_{0}} \approx \begin{cases} 1 + \frac{1}{2} \frac{k}{k_{\star}}, & k \ll k_{\star} \\ 1 + \frac{H}{4M_{\star}} \sin\left[\frac{2M_{\star}}{H}\left(\frac{k^{2}}{k_{\star}^{2}} - 1\right)\right], & k \gg k_{\star} \\ M_{\star} \gg H \end{cases}$$

$$k_{\star} \sim \frac{3 \times 10^{-6}}{\mathrm{Mpc}} \left(\frac{M_{\star}}{H}\right) \left(\frac{E_{\mathrm{inf}}}{10^{16} \,\mathrm{GeV}}\right) \left(\frac{e^{65}}{e^{N}}\right) \left(\frac{100}{\mathcal{G}}\right)^{1/12}$$

 \square N is the number of e-folds of inflation

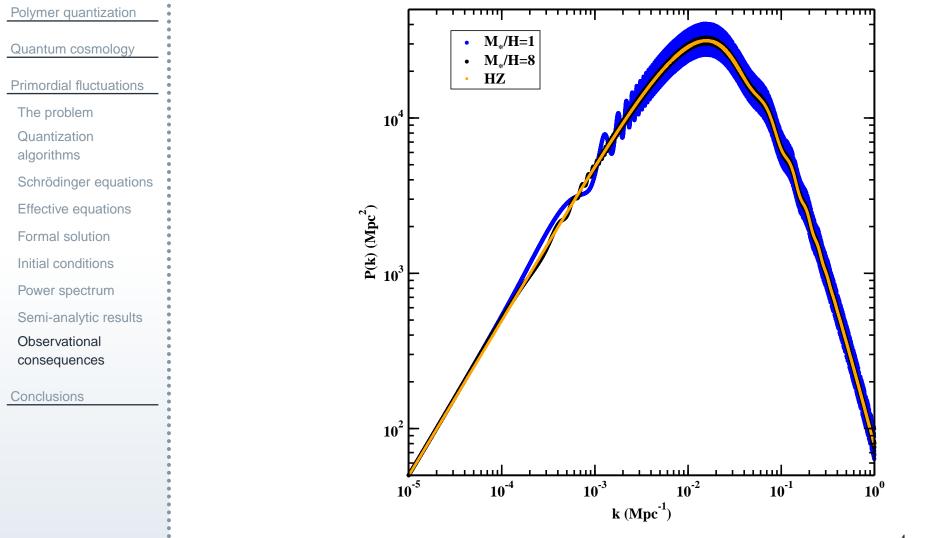
- \Box E_{inf} is the energy scale of inflation
- \Box \mathcal{G} is the effective number of relativistic species at the end of inflation

Observational consequences



Polymer cosmology – 23 / 26

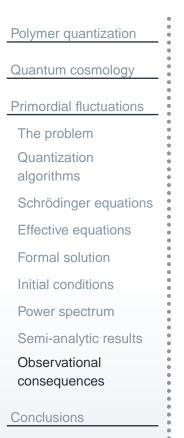
Observational consequences

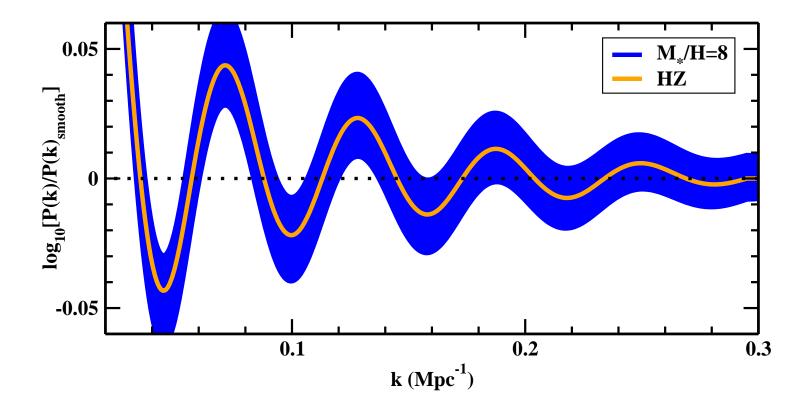


Present day matter power spectrum with $k_{\star} = 5 \times 10^{-4} \,\mathrm{Mpc^{-1}}$

Polymer cosmology – 23 / 26

Observational consequences





baryon acoustic oscillations with $k_{\star} = 5 \times 10^{-4} \, \mathrm{Mpc^{-1}}$

I $M_{\star}/H \sim 1$ already ruled out by current observations

I future surveys (e.g. Euclid) will be able to rule out $M_{\star}/H \lesssim 10$

Polymer qu	uantization
------------	-------------

Quantum cosmology

Primordial fluctuations

Conclusions

Summary

Future work

Conclusions

Polymer quantization
Quantum cosmology
Primordial fluctuations
Conclusions
Summary
Future work

polymer quantization (PQ) is an alternative to standard quantization involving a notion of fundamental discreteness

Polymer quantization
Quantum cosmology
Primordial fluctuations
Conclusions
Summary

Future work

polymer quantization (PQ) is an alternative to standard quantization involving a notion of fundamental discreteness

modifies standard results for energies $\gg M_{\star}$

Polymer quantization
Quantum cosmology
Primordial fluctuations
Conclusions
Summary

Future work

polymer quantization (PQ) is an alternative to standard quantization involving a notion of fundamental discreteness

modifies standard results for energies $\gg M_{\star}$

 \square M_{\star} is a free parameter to be fixed by experiment

Polymer quantization
Quantum cosmology
Primordial fluctuations
Conclusions
Summary

Future work

- polymer quantization (PQ) is an alternative to standard quantization involving a notion of fundamental discreteness
- modifies standard results for energies $\gg M_{\star}$
 - \square M_{\star} is a free parameter to be fixed by experiment
- PQ of matter in quantum cosmology results in early time de Sitter inflation with $H \sim M_{\star}^2/M_{\rm Pl}$

Polymer quantization Quantum cosmology Primordial fluctuations Conclusions Summary

Future work

we found PQ corrections to scale invariant spectrum of primordial perturbations in de Sitter universes

Polymer quantization
Quantum cosmology
Primordial fluctuations
Conclusions

Summary

Future work

we found PQ corrections to scale invariant spectrum of primordial perturbations in de Sitter universes

 \Box oscillatory power spectrum for $k \gtrsim k_{\star}$

Polymer quantization
Quantum cosmology
Primordial fluctuations
Conclusions
Summary

Future work

we found PQ corrections to scale invariant spectrum of primordial perturbations in de Sitter universes

 \Box oscillatory power spectrum for $k \gtrsim k_{\star}$

 \square amplitude of oscillations $\propto H/M_{\star}$

Polymer quantization
Quantum cosmology
Primordial fluctuations
Conclusions
Summary

Future work

we found PQ corrections to scale invariant spectrum of primordial perturbations in de Sitter universes

 \square oscillatory power spectrum for $k\gtrsim k_{\star}$

 \exists amplitude of oscillations $\propto H/M_{\star}$

 \Box if polymer effects drive inflation $H/M_{\star} \sim E_{\rm inf}/M_{\rm Pl}$

Polymer quantization
Quantum cosmology
Primordial fluctuations
Conclusions
Summary

Future work

we found PQ corrections to scale invariant spectrum of primordial perturbations in de Sitter universes

 \square oscillatory power spectrum for $k\gtrsim k_{\star}$

] amplitude of oscillations $\propto H/M_{\star}$

 \square if polymer effects drive inflation $H/M_{\star} \sim E_{\rm inf}/M_{\rm Pl}$

oscillation amplitude $\sim 10^{-4}$ for GUT scale inflation

Polymer quantization Quantum cosmology Primordial fluctuations Conclusions Summary

Future work

- we found PQ corrections to scale invariant spectrum of primordial perturbations in de Sitter universes
 - \square oscillatory power spectrum for $k\gtrsim k_{\star}$
 - amplitude of oscillations $\propto H/M_{\star}$
 - \square if polymer effects drive inflation $H/M_{\star} \sim E_{\rm inf}/M_{\rm Pl}$
 - oscillation amplitude $\sim 10^{-4}$ for GUT scale inflation
 - □ difficult to see in CMB power spectra

Polymer quantization Quantum cosmology Primordial fluctuations Conclusions Summary

Future work

- we found PQ corrections to scale invariant spectrum of primordial perturbations in de Sitter universes
 - \square oscillatory power spectrum for $k\gtrsim k_{\star}$
 - \Box amplitude of oscillations $\propto H/M_{\star}$
 - \square if polymer effects drive inflation $H/M_{\star} \sim E_{\rm inf}/M_{\rm Pl}$
 - oscillation amplitude $\sim 10^{-4}$ for GUT scale inflation
 - □ difficult to see in CMB power spectra
 - $\Box~$ future observations of baryon acoustic oscillations could constrain $H/M_{\star} \lesssim 0.1$

Polymer quantization

Quantum cosmology

Primordial fluctuations

Conclusions

Summary

Future work

generalization to slow roll inflation

Polymer quantization Quantum cosmology

Primordial fluctuations

Conclusions

Summary

Future work

generalization to slow roll inflation

tensor-to-scalar ratio

Polymer quantization
Quantum cosmology
Primordial fluctuations
Conclusions
Summary

Future work

generalization to slow roll inflation

tensor-to-scalar ratio

CMB bispectrum (non-gaussianities)

Polymer quantization
Quantum cosmology
Primordial fluctuations
Conclusions
Summary

Future work

generalization to slow roll inflation

tensor-to-scalar ratio

- CMB bispectrum (non-gaussianities)
- "Fourier transform then quantize" approach to inflationary fluctuations can be use to study effects of other alternative quantization schemes

Polymer quantization
Quantum cosmology
Primordial fluctuations
Conclusions

Summary

Future work

- generalization to slow roll inflation
- tensor-to-scalar ratio
- CMB bispectrum (non-gaussianities)
- "Fourier transform then quantize" approach to inflationary fluctuations can be use to study effects of other alternative quantization schemes
 - □ e.g. from modified uncertainty relations