> restart;

Stability properties of Euler-like methods

In this worksheet we are going to be considering the numeric solution of the following initial value _problem (which is analytically solvable):

```
> IVP := [diff(y(x), x)=lambda*y(x), y(0)=1];
dsolve(IVP);
IVP := \left[\frac{d}{dx}y(x) = \lambda y(x), y(0) = 1\right]y(x) = e^{\lambda x}(1)
```

The three stencils we consider for the numeric solution are the forward and backward Euler schemes, and the trapezoidal method. For this problem, each stencil gives the value of $y(x+h) = y_new$ explicitly in terms of $y(x) = y_new$.

$$\sum forward := (y_old, lambda, h) \rightarrow y_old*(1+lambda*h);backward := (y_old, lambda, h) \rightarrow -y_old/(-1+lambda*h);trap := (y_old, lambda, h) \rightarrow -y_old*(2+lambda*h)/(-2+lambda*h);forward := (y_old, \lambda, h) \rightarrow y_old (1 + \lambda h)backward := (y_old, \lambda, h) \rightarrow -\frac{y_old}{-1 + \lambda h}trap := (y_old, \lambda, h) \rightarrow -\frac{y_old(2 + \lambda h)}{-2 + \lambda h}$$
(2)

Since each stencil only involves lambda*h = z, the numerical solutions a parameterized by z only. The following procedure generates the numerical solution for 0 < x < xf=30/|lambda| for a given choice of stencil and z:

We know that the forward method is absolutely stable if -2 < z < 0. In this range (z<0), we expect to obtain a decaying exponential, which we do:

Note that the trap method actually does well reproducing the expected cosine-like behaviour. The forward solution seems to be exponentially growing in time (indicating the instability). While the backward solution does not blow-up (indicating it is stable), it doesn't do as good a job as the trap method. The following procedure calculates the error in the numeric approximation as a function of x.

As can be seen in the below plot, the error in the forward stencil grow exponentially, while the error in the backward and trapezoidal stencil remains bounded (for z = 0.1*I). This is the hallmark of absolute stability: the fact that errors do not increase exponentially in time. Note that the errors for a stable method do not necessary decrease as the simulation continues, they just do not blow-up (as in the trap method).

```
> z := 0.1*I;
plot([EULER_ERROR(z,forward),EULER_ERROR(z,backward),EULER_ERROR
(z,trap)],color=[red,green,blue],legend=[`forward`,`backward`,
`trap`],axes=boxed,labels=[`x`,`],title=`Error as a function of
x`);
```

```
z := 0.1 I
```

