
O O

O O

(2)(2)

O O

O O

(1)(1)

O O

restart;

Stability properties of Euler-like methods
In this worksheet we are going to be considering the numeric solution of the following initial value
problem (which is analytically solvable):

IVP := [diff(y(x),x)=lambda*y(x),y(0)=1];
dsolve(IVP);

IVP :=
d
dx

 y x = l y x , y 0 = 1

y x = el x

The three stencils we consider for the numeric solution are the forward and backward Euler schemes, and
the trapezoidal method. For this problem, each stencil gives the value of y(x+h) = y_new explicitly in
terns of y(x) = y_old.

forward := (y_old, lambda, h) -> y_old*(1+lambda*h);
backward := (y_old, lambda, h) -> -y_old/(-1+lambda*h);
trap := (y_old, lambda, h) -> -y_old*(2+lambda*h)/(-2+lambda*h);

forward := y_old, l, h /y_old 1C l h

backward := y_old, l, h /K
y_old

K1C l h

trap := y_old, l, h /K
y_old 2C l h

K2C l h

Since each stencil only involves lambda*h = z, the numerical solutions a parameterized by z only. The
following procedure generates the numerical solution for 0 < x < xf=30/|lambda| for a given choice of
stencil and z:

EULER := proc(z,stencil)
 local x, y, i,h,lambda,xf,N:
 h := 1:
 lambda := z/h:
 xf := 30*abs(1/lambda):
 N := round(xf/h);
 x := Array(0..N,[seq(evalf(i*h),i=0..N)]):
 y := Array(0..N):
 y[0] := 1:
 for i from 1 to N do:
 y[i] := evalf(stencil(y[i-1],lambda,h)):
 od:
 [seq([x[i],y[i]],i=0..N)]:
end proc:

We know that the forward method is absolutely stable if -2 < z < 0. In this range (z<0), we expect to
obtain a decaying exponential, which we do:

plot(EULER(-0.1,forward),axes=boxed,labels=[`x`,``],title=
`Forward Euler with z = -0.1`);

O O

x
0 100 200 300

0

0.2

0.4

0.6

0.8

1
Forward Euler with z = -0.1

However, if z < -2, the method is unstable, which results in nothing like a decaying exponential. In fact
the solution seems to grow exponentially:

plot(EULER(-2.2,forward),axes=boxed,labels=[`x`,``],title=
`Forward Euler with z = -2.2`);

O O

x
0 2 4 6 8 10 12 14

K10

K5

0

5

10

Forward Euler with z = -2.2

But both the trapezoidal and backward methods are supposed to be stable for all z < 0; i.e. they give
something that looks (sort-of) right:

plot([EULER(-2.2,backward),EULER(-2.2,trap)],axes=boxed,labels=
[`x`,``],title=`Backward Euler and trapezoidal with z = -2.2`,
legend=[`backward`,`trapezoidal`]);

O O

O O

backward trapezoidal
x

0 2 4 6 8 10 12 14

0

0.2

0.4

0.6

0.8

1
Backward Euler and trapezoidal with z = -2.2

This all works in the complex plane too. Now if z is complex, y(x) will also be complex, so we define
the following function that returns only the real part of the solution generated by EULER:

REAL := proc(data)
 map(x -> [x[1],Re(x[2])],data):
end proc:

Choosing z imaginary means that the forward Euler is unstable, while the other two methods are stable.
The expected analytic solution in this case is a cosine function. The numeric solutions generated are:

z := 0.1*I;

O O
plot([REAL(EULER(z,forward)),REAL(EULER(z,backward)),REAL(EULER
(z,trap))],color=[red,green,blue],legend=[`forward`,`backward`,
`trap`],axes=boxed,labels=[`x`,``]);

z := 0.1 I

forward backward trap
x

0 100 200 300

K4

K3

K2

K1

0

1

2

3

Note that the trap method actually does well reproducing the expected cosine-like behaviour. The forward
solution seems to be exponentially growing in time (indicating the instability). While the backward
solution does not blow-up (indicating it is stable), it doesn't do as good a job as the trap method. The
following procedure calculates the error in the numeric approximation as a function of x.

O O

O O

O O

EULER_ERROR := proc(z,stencil)
 map(x->[x[1],abs(x[2]-exp(z*x[1]))],EULER(z,stencil)):
end proc:

As can be seen in the below plot, the error in the forward stencil grow exponentially, while the error in
the backward and trapezoidal stencil remains bounded (for z = 0.1*I). This is the hallmark of absolute
stability: the fact that errors do not increase exponentially in time. Note that the errors for a stable method
do not necessary decrease as the simulation continues, they just do not blow-up (as in the trap method).

z := 0.1*I;
plot([EULER_ERROR(z,forward),EULER_ERROR(z,backward),EULER_ERROR
(z,trap)],color=[red,green,blue],legend=[`forward`,`backward`,
`trap`],axes=boxed,labels=[`x`,``],title=`Error as a function of
x`);

z := 0.1 I

O O

O O

O O

forward backward trap
x

0 100 200 300
0

1

2

3

Error as a function of x

