;> restart;
The Euler and trapezoidal stencils to solve

d _
1) =/ (np(x))

The purpose of this worksheet is to derive the three simplest numerical stencils to solve the first order
d
equation a5 (x)=f(x,y(x)), and study some of their properties. We first write down the ODE
X
| using the D notation:
> ode := D(y) (x) = £(x,y(x));
ode =D(y) (x) =/ (xy(x)))

In this expression, fis assumed to be a known function of the independant variable x and the function that
we are trying to solve for y (x). The simplest numerical stencils to solve this equation will give us an
approximation to y at some point x = X + 4 given some knowledge of y at x = X. All of these stencils are
| based on the Taylor series approximation for y (x) about x = X to linear order:
> eql := y(x) = series(y(x),x=X,2);
eql =y(x) =y(X) +D(») (X) (x=X) + O((x— X)) @

| Let us define 4 as the difference between x and X, and then get rid of x in the above expression:
[> eq2 := h = x - X;
eq3 := subs(isolate(eqg2,x) ,eql) ;
eq2 =h=x—X

eqg3=y(h+X)=y(X)+D(y)(X)h+0(h) 3)

;Now, we can remove the first derivative of y by making use of the differential equation:
> eq4 subs (x=X, ode) ;
eg5 := subs(eq4,eqg3);

eqg4:=D(y) (X)=f(Xy(X))
eq5=y(h+X)=y(X)+f(Xp(X))h+O(K) @

The forward Euler algorithm involves discarding the terms of order h* and higher in this expression and
hence obtain an approximation to y (X + /) in terms of y (X'). We can accompish this by converting the
above series into a polynomial using the convert/polynom command. Also, we can take X' = x, as
the i" point on an evenly spaced lattice x, = x, + ih, where A is the lattice spacing and i is an integer; it
then follows that X + h=x, .
Y, =y (X,) Implementing these steps and notational changes:

[> eq6 := convert(eq5,polynom) ;
eq7 := [y(h+X)=y[i+l],y(X)=y[i] ,X=x[i]];
eqg8 := subs(eq7,eqgb) ;
eq6 =y (h+X)=y(X) + /(X y(X))h

eq7 = [y(h+X) =y, |, Y(X) =y, X=x,]
eq8 =y, . =yt (X 0,) h (5)

[The last expression is the forward Euler stencil for solving ode. It is called an explicit algorithm because
the quantity we wish to calculate y. 41 is given explicitly in terms of y.. The backward Euler stencil is

Furthermore, we label the numeric approximation of y (x) atx = x_ as

obtained in a similar fashion, except we identify 4, y., and y, 41 differently:
[> eq9 := h = X - x;

eql0 := subs(isolate(eq9,x) ,eql) ;

eqll := subs(eq4,eqlO);

eql2 := convert(eqll,polynom) ;

eql3 := [y(-h+X)=y[i],y (X)=y[i+1],X=x[i+1]];
eqld := subs(eql3,eql2);

eq9 =h=X—x
eql0=y(~h+X)=y(X)—=D(y)(X)h+0((-h))
eqll =y(-h+X)=y(X)—f(Xy(X))h+0((-h))
eql2=y(~h+X)=y(X)—f(X.y(X))h
eql3 = [y(—h +X)=yl.,y(X)=yl.+1,X=xl.+l]
eqld =y, =y, =S (Y ppYipq)h (©6)

[This stencil is explicit because it will not in general be possible to alegraically isolate what we want to
calculate, i.e.y, . | =y (xl. i), except for very specific forms of £ We can rearrange the stencils to

| better demonstrate their geometric meaning:

> ForwardEuler := collect(expand(isolate(eq8,f(x[i],y[i]))) , h);
BackwardEuler := collect (expand(isolate(eql4,f(x[i+1],y[i+1]))) ,h);
B iy T
ForwardEuler :—f(xl.,yl.) S
o iy 7Y
BackwardEuler = f (xl. + 1Y) S — @)

[These forms illustrate that the forward Euler stencil (first equation) is a simple approximation of the first

derivative of y (x) in the interval x € [xl., X4] using ode evaluated at the lefthand side of the interval.

Conversely, the backward Euler stencil uses the differential equation to evalulate the derivative at the
righthand side of the interval. There is another stencil we can derive that is the average of these two
| approaches:
> Trapezoidal := (ForwardEuler+BackwardEuler)/2;

. 1 1 Yiv1 i
Trapezoidal:= — f(X, ;) + 5 /(X% 1 pYip1) T — 5 ®

[This is called the trapezoidal method, and it uses ode evaluated at both ends of the interval to approximate
»'(x). Like the backward Euler stencil, it represents an implicit scheme. As an example, we can look at

| what these stencils look like for the special case of f'(x, y) = Ay where A is a constant:

[> £ := (x,y) -> lambda*y;
Stencils := [ForwardEuler,BackwardEuler, Trapezoidal];
Labels := ["Forward Euler", "Backward Euler", "Trapezoidal"];
f=(xy)=ky
. Yiv1 ™ Vi Yiv1 7V 1 1 Yiv1 ™ Vi
Stencils = Kyl.= — Vi = — Zkyl.—l— ?Kyﬂrl: —
Labels = ["Forward Euler", "Backward Euler", "Trapezoidal"] 9)

[For this special case, we see that it is possible to isolate y, . | for each stencil. Let's do this using a loop:

> for j from 1 to 3 do:
Stencils[]j] := factor (isolate(Stencils[j],y[i+1])):
print (Labels[]j],Stencils[]j]):
od:

"Forward Euler",y, . =y (Ah+1)
Vi
Ah—1
v, (Ah +2)

"Trapezoidal", y, , | = - W (10)

"Backward Euler", y, . | = -

:Now, lets go back to the general case by undefining f:
> f = '£';
Stencils := [ForwardEuler,BackwardEuler, Trapezoidal];

f=r

Y; -V Y; -V 1
Stencils = f(xl.,yl.) = %,f(xﬂr l,yl.+1)= %, ?f(xl.,yi) (11)

1 i T
+?f(xi+1’yi+1)_T

We now want to determine what the error is in each stencil. To do this, we need to rewrite each of them
| in the standard form y, , , —yl.—h(I)(xl., Xy VeV) =0:
[> for j from 1 to 3 do:

Stencils[]j] := Stencils[j]l*h + y[i];

Stencils[]j] := (rhs-1lhs) (Stencils[]j])=0;

print (Stencillabels[]j],Stencils[]j]):
od:

StencilLabels,y, . | — —f(xl.,yl.) h=0
StencilLabels,, y. . —f(xl. TS AN 1) h—y.=0

. 1 1 _
StencilLabels,,y, . | —h (Tf(xl.,yl.) + Ef(xiJr l’yi+l)j —»,=0 12)

[Note that these relations define our numeric stencils in these sense that they give exact relations between
the approximations y, and y, , . Butif we replace the approximations with the exact values of y (x) they

are supposed to represent, the above will represent only approximate equalities. That is, if we make the

changes x, = x,x, . | = x+h,y, = y(x),y, . | = y(x+ h), the lefthand sides of the above

equations will only be approximately equal to zero. We call the magnitude of the discrepancy the "one
| step error" or "local error' in the stencil. Hence, the one step error in the various stencils will be:

> eqls := [y[i]l=y(x) ,y[i+l]=y(x+h) ,x[i]l=x,x[i+1]=x+h];
for j from 1 to 3 do:
Error[Labels[j]] := subs(eql5,lhs(Stencils[j]))
od;

eqls = [yl.:y(x),yl.jL { =y(x+h),xl.=x,xl.+1=x+h]
Error,; o e =Y (X T R) —y(x) = f(x,y(x))h
Error =y(x+h)—f(x+hy(x+h))h—y(x)

"Backward Euler"

1 1
Error,,TrapeZOidal,, =y(x+h)—h (Ef(x,y(x)) + ?f(x+h,y(x+h))J —y(x) (13)

[To estimate the magnitudes of these errors, we expand each of the above expression as a power series
| about /2 = 0 (since we are implicitly assuming / is a small quantity):
> for j from 1 to 3 do:
Error[Labels[]j]] := series(Error[Labels[j]],h,4);
od;
1 2
Error g e = (< (5(x)) + D) (x)) h+ 5 D () (x) &
1
-+€Dmuquwﬁ+owﬂ

B0 o= (- (50 (1)) £ D) (5))+ (5 D) (1) =Dy () (o

Errorugy i = (< (5(x)) + D) (x)) h + (%D”’(y) ()= 3 D,(/) (x (14)
1 1
7)) = 5 Dy () D) () |1+ (¢ DY) () = Dy ()
1 1
Y(x)) = 3Dy L) (6x(x)) D) (x) = 5 D, (/) (5.3(x)) D) (x)?

= D) () D) ()] 1+ 0 (1)

Notice that first, second and third derivatives of y appear explicitly in these expressions. The first
derivative terms can be removed by making use of ode. The second derivative can also be removed by
| examining the derivative of ode:

[> eqlé := diff (ode,x);
eql7 := convert (ode,diff) ;
eql8 := subs(eql7,eqlb) ;

eq16:=D? (y) (x) =D, (/) (x.y(x)) + D, (/) (x.y(x)) (—y(x)]

d
eql7 = ay(x):f(an’(x))

eq18 =D (y) (x) =D, (f) (x(x)) + Dy (f) (x,(x))f(x¥y(x)) 15)

;S imilarly, the third derivative can be removed by differentiating eq18:
> eql9 := subs(eql7,diff (eql8,x));

eq19 =D () (x) =D, | (f) (x¥(x)) + D, ,(/) (x¥(x))f(xy(x)) (16)

+ (D, (/) (6p(x)) + D, () (6p(x)) S (%6p(x)))/ (%y(x)) +D, (/) (%
y(x)) (D () (6p(x)) + Dy () (6p(x)) S (x(x)))

We now substitute our formulae for the derivatives of y into the error expressions:
> for j from 1 to 3 do:

Error[Labels[j]] := subs(eql8,eql9,ode,Error|[Labels[]j]])
od;
1 1
Error, g o e = (2 D, (/) (x.¥(x)) + 5 Dy(f) (x3(x))f (x.y(x))] i
1) 1 X 1

+ (6 D, (/) (x3(x)) + ¢ Dy ,(/) (2r(x) [(xr(x)) + = (D, ,(f)

1

y(x)) + D, 5 (f) ey (x)) f(xy(x)))f(xy(x)) + =D, (f) (x,

¥(x)) (D (f) (%2(x)) +Dy(f) (x,y(x))f(x,y(x)))] i +0(h)

B0 st = (=3 Dy) (50()) = 3 D) ey ()) (e () | 2+

1 5 1
"3 D () (ey(x)) = =Dy () (y(x))f(xny(x)) + = (D) (/) (v,

1

¥(x)) + Dy, () 6y (x)) f(%y(x)))f(xy(x)) = 5 Dy (/) (x,

. 1
y(x)) (D () (uy(x)) D, (f) (xr(x)) f(%y(x))) = 7Dy ,(f) (%

Y(x)) /(57 (x))2] i+ 0(n')

1 1
Error"Trapezoidal” = [_12D1>1(f) (xay(x)) - ?Dl,z(f) (xay(x))f(x:y(x)) (17)

1 , , .
t 5 (P 2() ey (x)) +Dy () ey (x)) f(%y(x))) f(%y(x))

— 13 Do) (6 y(x)) (D (f) (xy(x)) +D,(f) (xy(x)) f(xp(x)))

1 2\ .3 4
= D) () ()] 1 + 0 ()

We see that the local error for the forward and backward schemes is O (h2). Futhermore, the leading
order terms for those stencils is the negative of the other one. Since the trapezoidal scheme is the average
of the forward and backward algorithms, this explains why the leading order error for the trapeziodal

scheme is O (K). In other words, the trapezoidal scheme is more accurate than the other two. Note that
if all we are after is the magnitude of the leading order terms in the errors, we can just expand the above in
| a low order series:

[> for j from 1 to 3 do:

Error[Labels[j]] := series(Error[Labels[j]],h,0);
od;

2
Error"Forward Euler" =0 (h)
2
Error"Backward Euler" =0 (h)
Error =0(h) (18)

"Trapezoidal"

[We now turn our attention to actual numerical algorithms employing these stencils. Since the forward
Euler scheme is explicit, it is particularly easy to develop some code for it that works for arbitrary
functions 1. It is useful to rewrite the stencil with y, |, isolated on the LHS:

> eq20 := isolate(Stencils[1],y[i+1]);
eq20:=yl.+l=yl.+f(xl.,yl.)h 19)

[Now we can transcribe this as a mapping that takes the stepsize and the old values of y. and x; and returns

the new value y, . | :

[> y new := (h,x old,y old) -> y old + f(x _old,y old)*h;
y new = (h,x old,y old)—y old + f (x _old,y old) h (20)

We could have equivalently accomplished this by using the unapply command, which converts
| expression into mappings without having to re-write them manually:
> y_new := unapply(rhs(eq20) h,x[i],y[i])’
y new = (h,y2,y3)—y3 +f(y2,y3) h (21)

Here is a procedure EulerSol that calculates the numerical solution of ode in the interval
x € [0, 1] once the form of f (x, y) has been fixed. It's arguments are initial data in the form y (0) = y0
and the number of steps N. The output is a list of points, which we compare in the plot to the output
| generated by dsolve/numeric for the same problem.

> f = (x,y) -> -y*2+2*x;
ode;
y0 = 2;
N := 15;

EulerSol := proc(y0,N)
local h, x, y, i:

h := evalf(1/N):
x[0] := 0:
y[0] := yO:
for i from 1 to N do:
x[i] := x[i-1] + h:
y[i] := y new(h,x[i-1],y[i-1]):
od:
[seq([x[1],y[i]],i=0..N)]:

end proc:
data := EulerSol(yO,N);

dsolveSol := rhs(dsolve({ode,y(0)=y0},numeric,output=listprocedure)

[21)

plot([data,dsolveSol (x)],x=0..1,axes=boxed,legend=[Forward Euler’,
‘dsolve/numeric’]) ;

f= (x,y)—>—y2+2x

1.2048707341]

D(y)(x)=-y(x)* +2x
y0 =2
N =15

data = [[0, 2], [0.06666666667, 1.733333333], [0.1333333333, 1.541925926],
[0.2000000000, 1.401201333], [0.2666666667, 1.296976988 |, [0.3333333334,
1.220389256], [0.4000000001, 1.165543705], [0.4666666668, 1.128310896 |,
[0.5333333335, 1.105660753], [0.6000000002, 1.095272817], [0.6666666669,
1.095297981], [0.7333333336, 1.104208359], [0.8000000003, 1.120701063],
[0.8666666670, 1.143636338], [0.9333333337, 1.171998289], [1.000000000,

dsolveSol = proc(x) ... end proc

2.0

1.94

1.8+

1.7

1.6

1.54

1.4+

1.3

1.2

1.1

0.2 0.4 0.6 08 1

Forward Euler dsolve/numeric

> analytic_sol
analytic_sol

[Of course, this plot is really comparing the results of two numeric approximations to the true solution of
the problem. It is also useful to compare numeric answers to analytic results (if available). For the above
| choice of f/ (x, y) there is an analytic solution in terms of Airy functions:

dsolve ({ode,y (0)=y0}) :
rhs (analytic_sol);
(22)

analytic_sol := (22)

2
2
(—4n35/6 +32“3r(—) 32/3) AiryAi(1,2'° x)

3
7173

+ AiryBi(1,2"% x)

72
4n31/3+321/31“(?) 3176

o) 2
(-41:35/6 +32”3r(?) 3”) AiryAi(2'3 x)

.. + AiryBi (23 x)
4n31/3+321/31“(?) 3176

Here is some code that generates a movie comparing how the numerical solution converges to the analytic
| solution as the number of cells is increased:
[> for j from 1 to 25 do:

N := 4%*3:

Pl[j] := plot([EulerSol(yO,N),6analytic sol],x=0..1,title = cat
('number of cells N = °,N),axes=boxed,legend=[Forward Euler
solution’, "analytic solution’],style=[point,line])
od:
plots[display] (convert (p,list) ,insequence=true) ;

number of cells N = 4

1.8

1.6

1.4+

1.2

0 0.2 04 0.6 0.8 1
X
¢« Forward Euler solution

analytic solution

[We would also like to examine the performance of the backward and trapezoidal stencils, so let's make a
simple choice of /'(x, y) that admits an analytic solution allows each stencil to be solve for y, .,

| explicitly:

> f := (x,y) —-> lambda*y;
y0o := 'y0';
ode;

analytic_sol := rhs(dsolve({ode,y(0)=y0}));

for j from 1 to 3 do:
Stencils[]j] := isolate(Stencils[j],y[i+1])
print (Labels[]j],Stencils[]j]);

od:
f=(xy)=>hy
y0 =0
D(y)(x)=Ay(x)

analytic_sol = y0 M

"Forward Euler",y, . =Ay, h+y,

"Backward Euler", y, . | = .
1
"Trapezoidal", Vi = 1 (23)
l— —Ah

As for the above code, it will be useful to realize each stencil as a mapping with arguments /4, A and Yy

| We can do this using a loop and the unapply command:
> for j from 1 to 3 do:

stencil[]j] := unapply(rhs(Stencils[]j]) ,h,lambda,y[i])
od;

stencil | = (h, A, y3) >Ay3h+y3

v3

stencil, = (h, N, y3) > ——
L= (1A, 3) ——

1
y3+ ?ky.?h

stencily = (h,A,y3)— 24)

1
1 — —
27\,h

_Conversely, we could have accomplished the same thing in one line by using the map command, which
applies the same mapping onto each element of a list (in this case we are applying operations onto each
| element of Stencils to generate a new list stencil):

[> stencil := 'stencil':
stencil := map (u->unapply (rhs(u) ,h,lambda,y[i]),Stencils) ;
1
stencil = | (h, A, y3) >N y3 h+ 3, (h, %,y3)—>y7, (h,\,y3)— n 25)

[Tt is interesting to note that even though each of the stencils give different expressions for y, Ry they

| actually agree with one another to order 7. To see this, let's perform some Taylor series expansions:
> for j from 1 to 3 do:
Labels[j],y[i+l] = series(stencil[j] (h,lambda,y[i]) ,h,62);
od;

"Forward Euler",y, ., =y, + Ay h
"Backward Euler", y. . =y, + Ay h+ O (hz)
"Trapezoidal”, y, , | =y + Ay h+O(i*) (26)

_Now, here is a procedure EulerSol2 that calculates a numeric solution for y (x) forx € [0, 1] using
N cells and assuming y (0) = »0 and a given value of L. The value of choice dictates which stencil is
| used: 1 for forward Euler, 2 for backward Euler, and 3 for trapezoidal.

[> EulerSol2 := proc (y0,N,lambda, choice)
local h, x, y, i:

h := evalf(1/N):

x[0] := O0:

y[0] := yO:

for i from 1 to N do:
x[i] := x[i-1] + h:

y[i] := stencil[choice] (h,lambda,y[i-1]):

od:
[seq([x[1],y[i]],i=0..N)]:

end proc:

Here is a plot of the numeric output for each stencil compared to the actually solution. (Because we are
going to plot 4 curves on our graph, I needed to augment Labels into NewLabels in order to gereate
| the legend.) It seems as if the trapezoidal method performs much better than the other two:

[> N := 15;
yo := 2;
lambda := -4;
NewLabels := [op(Labels),h "analytic solution"];

plot([seq(EulerSol2(y0O,N,lambda,j),j=1..3) ,analytic_sol],x=0..1,
legend=NewLabels, axes=boxed, style=[point$3,1line]) ;

N=15
0 =2
A=-4

NewLabels := ["Forward Euler", "Backward Euler", "Trapezoidal", "analytic solution" |

0 0.2 0.4 0.6 0.8

¢ Forward Euler ¢ Backward Euler
Trapezoidal analytic solution

We can quantify exactly how well the various stencils are doing by comparing the numeric and actual
values for y at some fixed value of x, say x = 1. We call this the global error in the numeric solution at
| x =1, which we denote by e:

[> epsilon := proc(y0,N,lambda,choice)
local numerical, actual:

numerical := EulerSol2(y0,N,lambda,choice) [N+1]([2]:
actual := yO*exp(lambda) :
evalf (abs (numerical - actual)):

| end proc:

In this procedure, note that the [N+1] [2] suffix after EulerSol2 (y0,N, lambda, choice) has the
effect of picking out the last element of the list (which is itself a list of 2 quantities), and then picking out
the second element of that sub-list (which is the numerical answer for y (1)). We now generate a log-log
| plot of the global errors for each stencil as a function of NV:

[> data := 'data':

for j from 1 to 3 do:
data[j] := [seq([N,epsilon(y0,N,lambda,j)],N=5..1000,5)];
od:

plots[loglogplot] (convert (data,list) ,axes=boxed,labels=[number of
steps ', "global error'],legend=Labels) ;

10-2€
10-3?
global error 1 -4_:
1073

10-°-

5 10 50 100 500 1000
number of steps
Backward Euler

Forward Euler
Trapezoidal

=F or N = 100, the error curves look linear on this log-log plot. This implies that above some threshold

number of steps, the errors obey a approximate power law € = aN b where a and b are constants. We
can determine the values of these parameters by fitting a power law to our error data using
Statistics/PowerFit. We first need to regenerate our data for N > 100; i.e., the range for which
| we believe a power law ought to be valid:

[> data := 'data’:

for j from 1 to 3 do:
data[j] := [seq([N,epsilon(y0,N,lambda,j)],N=100..1000,5)];
od:
We then use the Statistics[PowerFit] command to perform the fit. Note that this function
requires the input to be a matrix, which is why we use the convert/Matrix structure. The raw output

| of the fitting algorithms is shown for each stencil, as well as the value of b in the power-law € = aN b,
> for j from 1 to 3 do:
fit[j] := Statistics[PowerFit] (convert(data[j], Matrix), N,
output=[leastsquaresfunction,parametervalues]) :
print (Labels[3],fit[j],b=fit[j][2]1[2]);
od:

-1.25643979942728
-0.995851786083571

0.284665691523995
N0-995851786083571

"Forward Euler",

2

-0.995851786083571

0.301341961047440
) 1:00397729890028

, b= -1.00397729890028

"Backward Euler",
-1.00397729890028

-1.19950957587335 ‘

-1.62871105613015
-2.00065716714713

0.196182279176729
N2:00065716714713 >

"Trapezoidal", ,b=-2.00065716714713 27

We see that for asyptotically large numbers of steps N >> 1, the global errors are O (N) =0 (h) for

the forward and backward Euler stencils, and O (N 2)=0 (h2) for the trapezoidal method. This

confirms the general expectation that for a stencil with one step error O (hp) , we expect the global error
to obey

global error ~ (number of steps) x (one-step error for each step)
=NxO(r)=0(r")x0o(r)=0(n""1).

[Recall that we showed in (18) above that p = 2 for forward and backward Euler, and p = 3 for the

| trapezoidal algoirthm.]

NOTE: the above syntax for Statistics[PowerFit] only works in Maple 15. For previous
| versions, you need to do this:

[> for j from 1 to 3 do:

M := convert(data[j], Matrix):

X := LinearAlgebra[Column] (M,1):

Y := LinearAlgebra[Column] (M,2):

fit[j] := Statistics[PowerFit] (X,Y, N,output=

[leastsquaresfunction,parametervalues]) :
print (Labels[j],fit[j],b=fit[j][2]1[2]);
od:

-1.25643979942728
-0.995851786083571

0.284665691523995
N0-995851786083571

-0.995851786083571

"Forward Euler",

2

0.301341961047440
) 1:00397729890028

, b= -1.00397729890028

"Backward Euler",
-1.00397729890028

-1.19950957587335 ‘

-1.62871105613015
-2.00065716714713

0.196182279176729
N2:00065716714713 >

"Trapezoidal", ,b=-2.00065716714713 (28)

