> restart;

with (PDEtools):
with(ArrayTools):
with(plots):

FTCS stencil for the diffusion equation

The purpose of this worksheet is to develop a working code to numerically solve the diffusion equation.
We will emply a particular finite difference stencil for the PDE that involves appriximating the time
derivatives in a one-sided manner baised toward the future (forward time or FT) and a centered
approximation for the spatial derivatives (center space or CS). We'll make use of the centered stencil and
| one_sided procedures developed in stencils_higher derivatives.mws:

> centered_stencil := proc(r,N,{direction := spatial})
local n, stencil, vars, beta_sol:
n := floor(N/2):
if (direction = spatial) then:
stencil := D[2Sr](u)(t,x) - add(beta[i]*u(t,x+i*h),i=-n..
n);
vars := [u(t,x),seq(D[2$i](u)(t,x),i=1..N-1)];
else:
stencil := D[1$r](u)(t,x) - add(beta[i]*u(t+i*h,x),i=-n..
n);
vars := [u(t,x),seq(D[1$i](u)(t,x),i=1..N-1)];
fi:
beta_sol := solve([coeffs(collect(convert(series(stencil, h,
N) ,polynom),vars, 'distributed'),vars)]):
stencil := subs(beta_sol,stencil);
if (direction = spatial) then:
convert (stencil = convert(series(stencil,h,N+2),polynom),
diff);
else:
subs (h=s,convert (stencil = convert(series(stencil,h,N+2),
polynom) ,diff));
fi:
end proc:

onesided_stencil := proc(r,N,{direction := spatial})
local stencil, vars, beta_sol:
if (direction = spatial) then:
stencil := D[2Sr](u)(t,x) - add(beta[i]*u(t,x+i*h),i=0..
N-1);
vars := [u(t,x),seq(D[2$i](u)(t,x),i=1..N-1)];
else:
stencil := D[18r](u)(t,x) - add(beta[i]*u(t+i*h,x),1i=0..
N-1);
vars := [u(t,x),seq(D[1$i](u)(t,x),i=1..N-1)];
fi:
beta_sol := solve([coeffs(collect(convert(series(stencil, h,
N) ,polynom),vars, 'distributed'),vars)]):
stencil := subs(beta _sol,stencil);
if (direction = spatial) then:
convert (stencil = convert(series(leadterm” (stencil),h,
N+1) ,polynom) ,diff);
else:
subs (h=s,convert (stencil = convert(series(leadterm”
(stencil) , h,N+1),polynom) ,diff));
fi:
end proc:

:Here is the differential equation we want to solve:

> eq0 := diff(u(t,x),t) - d*diff(u(t,x),x,x);

0 02
eq0:=§u(t,x)—d[ax—2u(t,x)] 0))

[We will employ a one-sided and centered stencil for the temporal and spatial derivatives, respectively.
| These are given by:

> eql := onesided_stencil(1l,2,direction=temporal);
eq2 := centered_stencil(2,3,direction=spatial);

0 u(t,x u(t+s,x 1 02
eql :ZEu(t,x)-l- (S) _ ul S) Y [yu(t,x))s 2)
02 u(t,x —h) 2u(t,x) u(t,x + h) 1 o4 2
eq?2 = —— u(t,x) — + — =-— | ——u(t,x) | h
R () * * * 12 (ax* ())

;We discard the error terms on the right and re-arrange both equations to solve for the derivatives:
> eq3 isolate(lhs(eql) ,diff(u(t,x),t));
eq4 isolate(lhs(eq2),diff(u(t,x),x,x));

0 u(t, x) n u(t+s,x)

3= —u(t,x)= -
eq3 = o ultx) = - - ©
02 u(t,x —h 2u(t,x u(t,x +h
eqd = —5 u(t,x) = (7) _ (2) + (3)
Ox h h h
:We substitute these stencils into the PDE an isolate u(t+s,x):
> eq5 := subs(eq3,eq4,eq0);
eq6 := expand(isolate(eq5,u(t+s,x)));
t t t,x—h 2ul(t t h
eqs = - u(t,x) " u(t+s,x) _d u(,x2) _ u(z,x) n u(,x2+) @)
$ S h h h

sdu(t,x—h) 2sdu(tx) n sdu(t,x+ h)

eq6 =u(t+s,x)=u(t,x)+ 2 2 2

eq6 is our stencil to solve the problem. It gives the value of u in the future (time t + s) in terms of the
value of u in the past (time t). Given knowledge of u at time t, the future values of u are given explicitly
by eq6, hence we call this an explicit scheme. The error in the stencil can be obtained by expanding the
| LHS minus RHS of eq6 in a double Taylor series in s and h:
> eq7 := Error = expand (series(series((lhs-rhs) (eq6),s) ,h));

1 4
eq7 = Error=D (u)(t,x)s —sdDzjz(u)(t,x) + e Dl, 1,1,1(“)(t’x) s Q)
1 s, 1 2, 1 3
+ WDLI’l,l’](u)(t,x)s + EDI’I(u)(t,x)s + gDhl’l(u)(t,x)s
6 1 2 4
+0(s°) — EdDz,z,z,z(”)(t’x)Sh +0(n*)

jOf course, this sould be simplifed by using the original PDE:

[> eq8 := convert (convert (dsubs (isolate(eq0,diff(u(t,x),t)),convert
(eq7,diff)),polynom),polynom) ;

1 8 1 10 1 4
eq8 = Error = —4q (;—u(t,x)]s4 +—d’ (66 u(t,x)]s5 + —d’ (a—u(t, 6)

24 R 120 10

1 6 1 4
x)] S+ —d (66u(t,x)]s3 - —d (au(t,x))sh2
6 Ox

[Ttis nota priori obvious which is the dominant error term without knowing anything about the relative
sizes of s and h, so we'll leave this alone for now. We now convert eq6 into a procedure that forms the
| basis of our numerical scheme.

> eq9 := subs(u(t,x)=u_middle,u(t,x-h)=u_left,u(t,x+h)=u_right,u(t+
s,x)=u_future,eqb);
evolve := unapply(rhs(eq9),u_left,u middle,u_right,h,s,d);
sdu_left 25 du middle " s du right

eq9 = u_future = u_middle +)
s W W
) .
emhe?(%kﬁuJMMhuJﬁﬂgh&d)%MJMMk+-Sd;kﬁ—- Sd:£ka
+ 5 d u_zright
h

The mapping evolve takes information about u on a given time slice and gives the value at a future time
slice in terms of h, s, and d. Before we write our own procedure exploiting this stencil, let's use
pdsolve/numeric to see what the solution should look like. Now, we need to specifiy boundard and initial
conditions to get a numerical solution. Since the PDE has only one time derivative, we only need to
specify the initial profile of u. For boundary conditons, we fix u to be zero at x = -X/2 and x = +X/2.

We also choose a time step size s, and select the spatial stepsize to be proportional to sqrt(s). Why? This
will be clarified in a later worksheet on the von Neumann stabiliy analysis. We now use pdsolve/numeric
| to generate a movie:

> T := 1;
X := 2;
d :=1;
s := 0.01;
h := sqrt(s*d*2);
f := x-> exp(-(5*x/X)"8):
IBC := [u(0,x)=f(x),u(t,-X/2)=0,u(t,+X/2)=0]:

pds := pdsolve(eqO,IBC,numeric,spacestep=h,timestep=s):
pds:-animate(t=0..T,axes=boxed, frames=40);

=1
X=2
d=1
s :=0.01

h=0.1414213562

0.8

0.6

0.4-

0.2

[Here is our procedure to generate a similar movie using the FTCS stencil. There are comments
| interspered through the code:

> FICS := proc(X, T, s, h, d, f) local N, M, x, XX, u_past,
u_future, p, i, j:

We first determine the number of time and space steps

N :
M :

round (_T/_s)
round(_X/_h)

We define a vector containing the x-coordinates of the
spatial lattice

X 1= j -> - _X/2 + (j-1)/(M-1)*_X;
:= Vector(1l..M,[seq(x(j),J=1..M)],datatype=float):

The scheme will be based on two vectors u_past and
u_future

u_past corresponds to the field values on a given time
step

u_future corresponds to the field values at the next
time step

To begin, we fix u_past from the initial data

u_past := Vector(l..M,[seq(_f(XX[]j]),j=1..M)],datatype=
float):

Our goal will be a movie whose frames are plots of u at
each time step
Here is the first frame

P[1l] := plot(convert(Matrix([XX,u past]),listlist), axes=
boxed) ;

Now we start the main calculation loop
i will run over time steps while j runs over spacesteps

for i from 2 to N do:

We initialize the u_future vector and fix its
values at either end based on the BOUNDARY CONDITIONS

u_future := Vector(l..M,datatype=float):
u_future[l] := O:
u_future[M] := O:

The rest of the values of u_future are obtained by
using the evolve procedure
Notice the arguments of evolve are the values of

u_past
for j from 2 to M-1 do:
u_future[j] := evolve(u_past[j-1],u past[j],
u_past[j+1],_h, s, d):

od:

Now, we get ready for the next time step by making
u_future into the new u_past

Copy(u_future,u_past):

Finally, another frame of our movie is obtained
from plotting the values of the new u_past

p[i] := plot(convert(Matrix([XX,u past]),listlist),
axes=bozxed);

od:
After the loop is over, we have N plots p[i] that are

the pictures of u at each time slice
The display command assembles these into a movie, which

is the output of the procedure
display(convert(p,list),insequence=true):

| end proc:
Here is the output of our procedure for the same parameters as pdsolve/numeric above. We get pretty
much the same answer, but our procedure takes longer since we have made no effort to obtain an efficient
| code. Also, the frame rate is different.
> FTCS(X,T,s,h,d, f);

1_

0.8

0.6

0.4+

0.2

