
O O

O O

(4)(4)

(1)(1)

(3)(3)

O O

O O

(2)(2)

O O

O O

restart;
with(LinearAlgebra):
with(plots):

Matrix methods for solving a linear ODE boundary value
problem

The purpose of this worksheet is to illustrate the use of matrix methods to solve a boundary value
problem for a second order linear ODE. The ODE and BCs we will work with are:

ODE := x^2*diff(u(x),x,x)+x*diff(u(x),x)+(x^2-1)*u(x);
BCs := u(1)=0,u(10)=1;

ODE := x2
d2

dx2 u x C x
d
dx

 u x C x2 K 1 u x

BCs := u 1 = 0, u 10 = 1

This BVP has an analytic solution in terms of Bessel functions:
analytic_sol := dsolve([ODE,u(1)=0,u(10)=1]);

analytic_sol := u x =
BesselY 1, 1 BesselJ 1, x

BesselY 1, 1 BesselJ 1, 10 KBesselY 1, 10 BesselJ 1, 1

K
BesselJ 1, 1 BesselY 1, x

BesselY 1, 1 BesselJ 1, 10 KBesselY 1, 10 BesselJ 1, 1

We will attempt to reproduce this analytical solution using matrix methods. The first step is to discretize
the ODE using finite difference approximations for the derivatives. The procedure centered_stencil
generates an N point centered_stencil for the rth derivative of u:

centered_stencil := proc(r,N)
 local n, stencil, vars, beta_sol:
 n := floor(N/2):
 stencil := D[1$r](u)(x) - add(beta[i]*u(x+i*h),i=-n..n);
 vars := [u(x),seq(D[1$i](u)(x),i=1..N-1)];
 beta_sol := solve([coeffs(collect(convert(series(stencil,h,
N),polynom),vars,'distributed'),vars)]):
 stencil := subs(beta_sol,stencil):
 convert(stencil = convert(series(stencil,h,N+2),polynom),
diff);
end proc:

We use the procedure to create stencils for the first and second derivatives of u:
substencil_1 := isolate(lhs(centered_stencil(1,3)),diff(u(x),x));
substencil_2 := isolate(lhs(centered_stencil(2,3)),diff(u(x),x));

substencil_1 :=
d
dx

 u x = K
1
2

u xK h

h
C

1
2

u xC h

h

substencil_2 :=
d2

dx2 u x =
u xK h

h2 K
2 u x

h2 C
u xC h

h2

Subbing these sub-stencils into the ODE gives
stencil :=subs(substencil_2,substencil_1,ODE);

stencil := x2
u xK h

h2 K
2 u x

h2 C
u xC h

h2 C x K
1
2

u xK h

h
C

1
2

u xC h

h

O O

(4)(4)

(5)(5)

(7)(7)

O O

(6)(6)

O O

O O

C x2 K 1 u x

We re-label the various quantities in the above as follows:
Subs := [seq(u(x+i*h)=u[j+i],i=-1..1),x=x[j]];
stencil := subs(Subs,stencil);

Subs := u xK h = uj K 1, u x = uj, u xC h = uj C 1, x = xj

stencil := xj
2

uj K 1

h2 K
2 uj

h2 C
uj C 1

h2 C xj K
1
2

uj K 1

h
C

1
2

uj C 1

h
C xj

2 K 1 uj

It will be convenient to convert stencil into a procedure using the unapply command:
Stencil := unapply(stencil,x[j],u[j-1],u[j],u[j+1],h);

Stencil := y1, y2, y3, y4, h /y12
y2
h2 K

2 y3
h2 C

y4
h2 C y1 K

1
2

y2
h

C
1
2

y4
h

C y12

K 1 y3

Now, if the x-lattice contains M+2 points with x[0] = 1 and x[M+1] = 10, then stencil must hold for all j
= 1 to M. This gives an M-dimensional linear system for the u[j] to solve once the boundary conditions u
[0] = 0 and u[M+1] = 1 are imposed. Here is an example of what the system looks like for a small value
of M:

u := 'u':
M := 5:
u[0] := 0:
u[M+1] := 1:
for i from 1 to M do:
 eq[i] := Stencil(x[i],u[i-1],u[i],u[i+1],h)
od;

eq1 := x1
2 K

2 u1

h2 C
u2

h2 C
1
2

x1 u2

h
C x1

2 K 1 u1

eq2 := x2
2

u1

h2 K
2 u2

h2 C
u3

h2 C x2 K
1
2

u1

h
C

1
2

u3

h
C x2

2 K 1 u2

eq3 := x3
2

u2

h2 K
2 u3

h2 C
u4

h2 C x3 K
1
2

u2

h
C

1
2

u4

h
C x3

2 K 1 u3

eq4 := x4
2

u3

h2 K
2 u4

h2 C
u5

h2 C x4 K
1
2

u3

h
C

1
2

u5

h
C x4

2 K 1 u4

eq5 := x5
2

u4

h2 K
2 u5

h2 C
1
h2 C x5 K

1
2

u4

h
C

1
2 h

C x5
2 K 1 u5

It is not difficulate to get MAPLE to solve such a system. This is what is done in BVP_solver, which
takes the number of interior lattice points M as its argument. It returns the numerical solution of the BVP
as a list of lists:

BVP_solver := proc(M)
 local X, h, u, i, eq, u_sol:
 X := j -> evalf(1 + 9*j/(M+1)); # X(j) is the
x-coord of the jth lattice point

O O

(4)(4)

O O

 h := X(1)-X(0); # h is the
lattice spacing
 u[0] := 0: # the first BC
 u[M+1] := 1: # the second
BC
 for i from 1 to M do: # this loop
generates the linear system to be solved
 eq[i] := Stencil(X(i),u[i-1],u[i],u[i+1],h):
 od;
 u_sol := LinearSolve(GenerateMatrix(
 convert(eq,list),[seq(u[i],i=1..M)])); # solve
using LinearSolve
 [[X(0),0],seq([X(j),u_sol[j]],j=1..M),[X(M+1),1]]: # the
output is a list of lists
end proc:

Here is a plot of the output of BVP_solver for sucessively larger values of M (red) compared to the
analytical solution (green).

plot([seq(BVP_solver(i*10),i=1..5),rhs(analytic_sol)],x=1..10,
color=[red$5,green],thickness=[0$5,5],axes=boxed);

O O

(4)(4)

O O

x
1 2 3 4 5 6 7 8 9 10

K2

K1

0

1

2

3

4

The numerical solution appears to be approaching the analytical solution as M gets larger. Here is a
moving illustrating how the numerical solution improves with increasing M:

p := 'p':
for i from 1 to 30 do:
 P := plot([BVP_solver(i),rhs(analytic_sol)],x=1..10,-6..6,
color=[red,green],axes=boxed):
 Q := textplot([1.5,5,cat(`M = `,i)],align={right}):
 p[i] := display([P,Q]):
od:

(4)(4)

O O

O O

display(convert(p,list),insequence=true);

M = 1

x
1 2 3 4 5 6 7 8 9 10

K6

K4

K2

0

2

4

6

