> restart;

with(LinearAlgebra):

with(plots):

Matrix methods for solving a linear ODE boundary value

problem

The purpose of this worksheet is to illustrate the use of matrix methods to solve a boundary value
| problem for a second order linear ODE. The ODE and BCs we will work with are:

[> ODE := x"2*diff(u(x),x,x)+x*diff(u(x),x)+(x"2-1)*u(x);
BCs := u(1)=0,u(10)=1;
ODE = x* iu(x) +x[iu(x))+(x2—l)u(x) 0))
: 2 or

BCs =u(l)=0,u(10) =1

;This BVP has an analytic solution in terms of Bessel functions:
> analytic_sol := dsolve([ODE,u(1)=0,u(10)=1]);
BesselY (1, 1) BesselJ (1, x)

- BesselY (1, 1) BesselJ (1, 10) — BesselY (1, 10) BesselJ (1, 1)

Bessell (1, 1) BesselY (1, x)
BesselY (1, 1) BesselJ (1, 10) — BesselY (1, 10) Bessell (1, 1)
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analytic_sol == u(x)

[ We will attempt to reproduce this analytical solution using matrix methods. The first step is to discretize
the ODE using finite difference approximations for the derivatives. The procedure centered stencil
| generates an N point centered_stencil for the rth derivative of u:

> centered_stencil := proc(r,N)
local n, stencil, vars, beta_sol:
n := floor(N/2):
stencil := D[1S8r] (u)(x) - add(beta[i]*u(x+i*h),i=-n..n);
vars := [u(x),seq(D[1$i](u)(x),i=1..N-1)];
beta_sol := solve([coeffs(collect(convert(series(stencil, h,
N) ,polynom),vars, 'distributed'),vars)]):
stencil := subs(beta_sol,stencil):
convert (stencil = convert (series(stencil,h,N+2),polynom),
diff);
end proc:
| We use the procedure to create stencils for the first and second derivatives of u:
> substencil_1 := isolate(lhs(centered_stencil(1,3)),diff(u(x),x));
substencil 2 := isolate(lhs(centered_stencil(2,3)),diff(u(x),x))

.
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:Subbing these sub-stencils into the ODE gives

> stencil :=subs(substencil_ 2,substencil_1,0DE);

stencil = x” u(x;h) — 2u(2x) + u(x-zi-h) +x(_L u(x —h) + 1 u(x+h) j )

h h h 2 h 2 h




+ (x2 — 1) u(x)
;We re-label the various quantities in the above as follows:
> Subs := [seq(u(x+i*h)=u[j+i],i=-1..1),x=x[]j]];
stencil := subs(Subs,stencil);

Subs = [u(x—h)Zuj_l,u(x)Zuj,u(x-i-h)
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:It will be convenient to convert stencil into a procedure using the unapply command:
> Stencil := unapply(stencil,x[j],u[j-1]1,u[j],u[j+1],h);
y2  2y3 ¥4 Ly 1y

Stencil = (1, y2, 3, 4, h) —yI* (— - 22y h—z) + y1 (—— = 4 ) + (y1*  (6)
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=Now, if the x-lattice contains M+2 points with x[0] = 1 and x[M+1] = 10, then stencil must hold for all
=1to M. This gives an M-dimensional linear system for the u[j] to solve once the boundary conditions u
[0] =0 and u[M+1] = 1 are imposed. Here is an example of what the system looks like for a small value
=of M:

> u = 'u':

M := 5:

u[0] := O:
u[M+1] := 1:

for i from 1 to M do:

eq[i] := Stencil(x[i],u[i-1],u[i],u[i+1],h)

od;
2u u X, u
2 1 2 1 1% 2
eq, =X, [- hz + h—2 + ? 7 + (xl — 1) u, @)
u 2u u u u
2 1 2 3 I * 1 % 2
€q2 —x2 h2 - h2 h2 +x2 —?74‘?7 +<x2—1)u2
u 2u u u u
2 2 3 4 1 % 1 “ 2
eq3 x3 h—z— hz h_2 +x3 —?74‘57 +<x3—l)u3
u 2u u u u
_ 2|73 4 5 1 % 1 % 2
eq4 —x4 h—z— hz h_2 +x4 —?74‘57 +(x4—1)u4
u 2u u
4 5 1 I " 1 2
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[Tt is not difficulate to get MAPLE to solve such a system. This is what is done in BVP_solver, which
takes the number of interior lattice points M as its argument. It returns the numerical solution of the BVP
| as a list of lists:

> BVP_solver := proc (M)
local X, h, u, i, eq, u_sol:
X := j -> evalf(l + 9*j7(M+1)); # X(j) is the
x-coord of the jth lattice point




h := X(1)-X(0); # h is the
lattice spacing

u[0] := O: # the first BC

u[M+1] := 1: # the second
BC

for i from 1 to M do: # this loop

generates the linear system to be solved
eq[i] := Stencil(X(i),u[i-1],u[i],u[i+1l],h):
od;
u_sol := LinearSolve(GenerateMatrix(
convert(eq,list),[seq(u[i],i=1..M)])); # solve
using LinearSolve
[[X(0),0],seq([X(j),u_sol[]j]],j=1..M),[X(M+1),1]]: # the
output is a list of lists
end proc:

Here is a plot of the output of BVP_solver for sucessively larger values of M (red) compared to the
| analytical solution (green).

[ > plot([seq(BVP_solver(i*10),i=1..5),rhs(analytic sol)],x=1..10,
color=[red$5,green],thickness=[085,5],axes=boxed) ;




[ The numerical solution appears to be approaching the analytical solution as M gets larger. Here is a
| moving illustrating how the numerical solution improves with increasing M:

> p = 'p':
for i from 1 to 30 do:
P := plot([BVP_solver(i),rhs(analytic_sol)],x=1..10,-6..6,
color=[red,green],axes=boxed):
Q0 := textplot([l.5,5,cat( M = ~,i)],align={right}):
B pl[i] := display([P,Q]):
od:




display(convert(p,list),insequence=true);
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