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restart;
with(LinearAlgebra):
with(plots):

Matrix methods for solving a linear ODE boundary value 
problem

The purpose of this worksheet is to illustrate the use of matrix methods to solve a boundary value 
problem for a second order linear ODE.  The ODE and BCs we will work with are:

ODE := x^2*diff(u(x),x,x)+x*diff(u(x),x)+(x^2-1)*u(x);
BCs := u(1)=0,u(10)=1;

ODE := x2 
d2

dx2  u x C x 
d
dx

 u x C x2 K 1  u x

BCs := u 1 = 0, u 10 = 1

This BVP has an analytic solution in terms of Bessel functions:
analytic_sol := dsolve([ODE,u(1)=0,u(10)=1]);

analytic_sol := u x =
BesselY 1, 1  BesselJ 1, x

BesselY 1, 1  BesselJ 1, 10 KBesselY 1, 10  BesselJ 1, 1

K
BesselJ 1, 1  BesselY 1, x

BesselY 1, 1  BesselJ 1, 10 KBesselY 1, 10  BesselJ 1, 1

We will attempt to reproduce this analytical solution using matrix methods.  The first step is to discretize 
the ODE using finite difference approximations for the derivatives.  The procedure centered_stencil 
generates an N point centered_stencil for the rth derivative of u:

centered_stencil := proc(r,N)
    local n, stencil, vars, beta_sol:
    n := floor(N/2):
       stencil := D[1$r](u)(x) - add(beta[i]*u(x+i*h),i=-n..n);
       vars := [u(x),seq(D[1$i](u)(x),i=1..N-1)];
    beta_sol := solve([coeffs(collect(convert(series(stencil,h,
N),polynom),vars,'distributed'),vars)]):
    stencil := subs(beta_sol,stencil):
    convert(stencil = convert(series(stencil,h,N+2),polynom),
diff);
end proc:

We use the procedure to create stencils for the first and second derivatives of u:
substencil_1 := isolate(lhs(centered_stencil(1,3)),diff(u(x),x));
substencil_2 := isolate(lhs(centered_stencil(2,3)),diff(u(x),x));

substencil_1 :=
d
dx
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substencil_2 :=
d2

dx2  u x =
u xK h

h2 K
2 u x

h2 C
u xC h

h2

Subbing these sub-stencils into the ODE gives 
stencil :=subs(substencil_2,substencil_1,ODE);

stencil := x2 
u xK h
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We re-label the various quantities in the above as follows:
Subs := [seq(u(x+i*h)=u[j+i],i=-1..1),x=x[j]];
stencil := subs(Subs,stencil);

Subs := u xK h = uj K 1, u x = uj, u xC h = uj C 1, x = xj

stencil := xj
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It will be convenient to convert stencil into a procedure using the unapply command:
Stencil := unapply(stencil,x[j],u[j-1],u[j],u[j+1],h);

Stencil := y1, y2, y3, y4, h /y12 
y2
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Now, if the x-lattice contains M+2 points with x[0] = 1 and x[M+1] = 10, then stencil must hold for all j 
= 1 to M.  This gives an M-dimensional linear system for the u[j] to solve once the boundary conditions u
[0] = 0 and u[M+1] = 1 are imposed.  Here is an example of what the system looks like for a small value 
of M:

u := 'u':
M := 5:
u[0] := 0:
u[M+1] := 1:
for i from 1 to M do:
   eq[i] := Stencil(x[i],u[i-1],u[i],u[i+1],h)
od;
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It is not difficulate to get MAPLE to solve such a system.  This is what is done in BVP_solver, which 
takes the number of interior lattice points M as its argument.  It returns the numerical solution of the BVP 
as a list of lists: 

BVP_solver := proc(M)
   local X, h, u, i, eq, u_sol:
   X := j -> evalf(1 + 9*j/(M+1));                 # X(j) is the 
x-coord of the jth lattice point
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   h := X(1)-X(0);                                 # h is the 
lattice spacing
   u[0] := 0:                                      # the first BC
   u[M+1] := 1:                                    # the second 
BC
   for i from 1 to M do:                           # this loop 
generates the linear system to be solved
      eq[i] := Stencil(X(i),u[i-1],u[i],u[i+1],h):
   od;
   u_sol := LinearSolve(GenerateMatrix(
      convert(eq,list),[seq(u[i],i=1..M)]));           # solve 
using LinearSolve
   [[X(0),0],seq([X(j),u_sol[j]],j=1..M),[X(M+1),1]]:  # the 
output is a list of lists
end proc:

Here is a plot of the output of BVP_solver for sucessively larger values of M (red) compared to the 
analytical solution (green).

plot([seq(BVP_solver(i*10),i=1..5),rhs(analytic_sol)],x=1..10,
color=[red$5,green],thickness=[0$5,5],axes=boxed);
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The numerical solution appears to be approaching the analytical solution as M gets larger.  Here is a 
moving illustrating how the numerical solution improves with increasing M:

p := 'p':
for i from 1 to 30 do:
   P := plot([BVP_solver(i),rhs(analytic_sol)],x=1..10,-6..6,
color=[red,green],axes=boxed):
   Q := textplot([1.5,5,cat(`M = `,i)],align={right}):
   p[i] := display([P,Q]):
od:
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display(convert(p,list),insequence=true);
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