
• •

• •

• •

(1.1.2)(1.1.2)

> >

> >

• •

> >
(1.1.1)(1.1.1)

> >

• •

restart;

MATH 4503/6503 Worksheet 1: An introduction to Maple

Sanjeev S. Seahra
revised: February 2, 2014

This worksheet is meant to serve as a brief introduction to the Maple symbolic computation package.
This is a powerful piece of softawre that have many applications outside the scope of this course. Here is
a non-exclusive list of what I find it useful for:

Originally, the package was developed with the purpose of performing (tedious) algebraic
manipulation of complicated mathematical expressions. So, it can save you pages and pages of writing
when trying to make sense of hideous equations, including finding their solutions. And it doesn't
make mistakes with minus signs, or factors of 2.

You can use the software to plot functions in two or three dimensions, construct movies, or plot
datapoints.

Maple knows calculus. That means it can analytically differentiate anything, integrate lots of things,
and solve some differential equations.

However, many of the integrals, DEs, and ordinary equations you will meet during your research will
be too hard for Maple to solve in closed form. But all is not lost, since the package includes many
facilities for constructing numeric solutions to problems.

Lastly, but not least, Maple can act as a fully-functional programming language like FORTRAN or C.

I will attempt to give a brief introduction to some of these topics, but the best way to learn is to play with
the software yourself, and use the help pages.

Fundamentals

Basic syntax
Maple worksheets are broken up into individual components called execution groups. Here is an
example of an execution group:
sin(0.1);

0.09983341665

The user input in this case is what appears in front of the > sign, while the output is the centred
text. Notice that the user input here is terminated by a semi-colon ";". Whenever you want Maple
to execute a command and print an answer, you must type in the command, end the line with a
semi-colon, and press ENTER. In this case, I have asked Maple to calculate sin(0.1) and print
out the answer. It is possible to have Maple execute a command and not display the answer by
terminating the line with a colon ":" instead. For example, by typing in
sin(0.1):

and pressing return, I get Maple to calculate sin(0.1), but it does not display the result. One
can have multiple commands in an execution group. For example,
sin(0.1); cos(0.4); ln(0.2);

> >

> >

(1.2.1)(1.2.1)

(1.2.2)(1.2.2)

> >

(1.1.3)(1.1.3)

(1.2.4)(1.2.4)

(1.2.5)(1.2.5)

(1.1.2)(1.1.2)

> >

> >

(1.2.3)(1.2.3)

> >

0.09983341665

0.9210609940

K1.609437912

You can see that the output of each command is put on a separate line. For clarity, we may want to
have each command in an execution group on its own line, which is accomplished by pressing
SHIFT+ENTER after the colons or semi-colons. This looks like:
sin(0.1);
cos(0.4);
ln(0.2);

0.09983341665

0.9210609940

K1.609437912

Defining quantities
To define a quantity, you use the symbol ":=". That is, a colon followed by an equal sign. For
example,
a := sin(x^2);
b := cos(x^2);

a := sin x2

b := cos x2

Now, whenever a appears again in the worksheet, Maple will automatically substitute in its
definition.
c := a^2 + b^2;

c := sin x2 2
C cos x2 2

Notice here that c has been recursively defined in terms of a and b. As in most programming
languages, you can re-define a quantity in terms of its current value:
c := sqrt(c);

c := sin x2 2
C cos x2 2

Sometimes, you want Maple to forget something you have previously defined. To "undefine" a,
we enter in the following:
a := 'a';

a := a

Now, whenever a appears, Maple will treat it as an unknown quantity. Finally, you can define a
bunch of stuff at once using commas:
theta,Theta,q := x,y,z;
theta^2 + Theta^2 + q^2;

q, Q, q := x, y, z

x2 C y2 C z2

Multi-element objects: tables, sets, lists, etc...

> >

(1.3.2)(1.3.2)

(1.3.1)(1.3.1)

(1.3.3)(1.3.3)

(1.1.2)(1.1.2)

(1.3.4)(1.3.4)

> >

> >

> >

> >

restart;
Several types of Maple objects can consist of collection of individual elements. The most
rudimentary of these is an table, which we can create as follows:
a[1] := 1;
a[2] := 4;
a[3] := 0;
print(a);

a1 := 1

a2 := 4

a3 := 0

table 1 = 1, 2 = 4, 3 = 0

The general rule is that components on multi-element objects are labeled by quantities in square
brackets. Note that "indices" are not necessarily numeric:
a := 'a':
a[t] := r^2;
a[r] := sin(omega*t);
a[theta] := exp(t-r);
a[phi] := L/r^2;

at := r2

ar := sin w t

a
q

:= et K r

a
f

:=
L
r2

Different types of data structures are sets and lists. Both of these are a one-dimensional collection
of objects, and their chief difference is whether or not ordering is important. A list is a comma-
delimited sequence of objects enclosed is square-brackets:
a := 'a':
a := [1,sin(x^2),int(f(q),q=-infinity..infinity),1];
a[3];

a := 1, sin x2 ,
KN

N

f q dq, 1

KN

N

f q dq

On the other hand, a set is a sequence of distinct elements where the order is not important. It is
defined as a list, but with curly brackets:
a := 'a':
a := {1=x+(y+z)^3,0=sin(x*z/y),3,2,1,3};

a := 1, 2, 3, 0 = sin
x z
y

, 1 = xC yC z 3

Notice that Maple did not preserve the ordering of elements given in the input, and that the
duplicate entry 3 was deleted. Finally, you can define n-dimensional objects known as arrays. For

> >

> >

> >

> >

> >

(1.4.1.1)(1.4.1.1)

(1.4.1.4)(1.4.1.4)

> >

(1.1.2)(1.1.2)

(1.4.1.3)(1.4.1.3)

> >

(1.4.1.2)(1.4.1.2)

example, here is a 3-dimensional object:
a := array(1..3,-5..5,0..2000);
a[1,-5,1999] := Pi;
a[0,0,0] := 5;

a := array 1 ..3, K5 ..5, 0 ..2000,

a1, K5, 1999 := p

Error, 1st index, 0, smaller than lower array bound 1
The first line here defined a 3-dimensional array whose first index runs 1 to 3, second runs from -5
to 5 and last runs from 0 to 2000. In the third line, I tried to assign a value to a component with
indices outside of these ranges, and hence generated an error.

Useful things to know
Special symbols
Certain symbols have reserved meanings. 3.14... is known as Pi, while Euler's constant is
gamma. To evaluate expressions involving these to floating point accuracy, use evalf:
a := [Pi/2,gamma];
evalf(a);

a :=
1
2

 p, g

1.570796327, 0.5772156649

We have already seen above how infinity refers to mathematical infinity. A capital I refers
to the square root of minus 1; i.e. K1 :
[I,I^2,I^3];

I, K1, KI

You can't assign values to any of these symbols:
I := 2;
Pi := 4;
gamma := 7;

Error, illegal use of an object as a name
Error, attempting to assign to `Pi` which is protected.
Try declaring `local Pi`; see ?protect for details.
Error, attempting to assign to `gamma` which is protected.
Try declaring `local gamma`; see ?protect for details.
One thing that is not a special symbol is e; that is, e does not represent the base of the natural
logarithm. Rather, e is just an ordinary variable:
e := 2;
e^7;

e := 2

128

If you actually want the base of the natural logarithm, use the function exp:
exp(1);
evalf(exp(1));

e

2.718281828

Some "essential" commands

> >

• •

• •

(2.1.1)(2.1.1)

> >

• •

> >

> >

• •

• •

(1.4.2.2)(1.4.2.2)

• •

> >

• •

(1.1.2)(1.1.2)

(1.4.2.1)(1.4.2.1)

• •

• •

Issuing a restart command undefines all variables, which makes it a useful command to
have at the top of a worksheet

Under the Edit menu, there is an ``execute entire worksheet'' item, which is self-explanatory

The echo character is %, which inserts the last line of output into the current line of input. To
wit:
tanh(1/2);
evalf(%);

tanh
1
2

0.4621171573

The comment character is #. When it appears on a line, the complier ignores everything after
it

On Windows and Linux, CTRL+J (CTRL+K) inserts a new execution group after (before)
the position of the cursor

On Macs, CMD+J (CMD+K) inserts a new execution group after (before) the position of
the cursor

Perhaps most importantly, a question mark followed by a topic opens a help-page (no
colon/semi-colon needed). Try ?evalf

By default, Maple calcuates floating point numbers to 10 digit accuracy. If you want more,
re-define Digits:
evalf(exp(1));
Digits := 30;
evalf(exp(1));
Digits := 10;

2.718281828

Digits := 30

2.71828182845904523536028747135

Digits := 10

Rule of thumb for Digits: you can set it up to 14 without sacrificing speed or memory, but
more than that will increase the CPU time for numeric calculations.

Manipulating expressions

Simplification
restart;

First and foremost, Maple is a symbolic computation language, so what it created to do is
algebraically simplify complex expressions by applying various algorithms. The easiest way to
access this functionality is to use the simplify command.
expr := sin(x)^2+cos(x)^2;
simplify(expr);

expr := sin x 2 C cos x 2

> >

• •

(2.1.3)(2.1.3)

(2.1.1)(2.1.1)

• •

(2.1.2)(2.1.2)

> >

• •

(2.1.4)(2.1.4)

(1.1.2)(1.1.2)

> >

> >

1

In and of itself, simplify is a bit of a brute force command that might not give you what you
want. The alternatives expand and factor perform more specific tasks:
expr_1 := (a+c*b)^3*(a-c);
simplify(expr_1);
expr_2 := expand(expr_1);
factor(expr_2);

expr_1 := b cC a 3 aK c

b cC a 3 aK c

expr_2 := a b3 c3 K b3 c4 C 3 a2 b2 c2 K 3 a b2 c3 C 3 a3 b cK 3 a2 b c2 C a4 K a3 c

b cC a 3 aK c

The collect and coeff commands are convenient for the manipulation of polynomials like
expr_2 above:
collect(expr_2,a);
expr_3 := collect(expr_2,a,factor);
coeff(expr_3,a^2);

a4 C 3 b cK c a3 C 3 b2 c2 K 3 b c2 a2 C b3 c3 K 3 b2 c3 aK b3 c4

expr_3 := a4 C c 3 bK 1 a3 C 3 b c2 bK 1 a2 C b2 c3 bK 3 aK b3 c4

3 b c2 bK 1

The second command reads in words: ``rewrite expr_2 such that each terms contains a single
power of a, and then factor each coefficient in the sum,'' while the third command answers the
question ``what is the coefficient of a2 in expr_3?''.
There are many simplification strategies/commands in Maple, and I can't review them all here.
Have a look at ?simplify and its sub-categories for more information. Here are a few tips:

Often applying expand and factor sequentially to an expression gives more satisfactory
results than just simplify

by default, Maple assumes everything is complex-valued unless told otherwise. This can cause
it to refuse to perform what look like trivial simplifications. One way around this is to use the
assume command:
x := 'x':
expr := sqrt(x^2)/sqrt(-x^2);
simplify(expr);
assume(x,real);
simplify(expr);

expr :=
x2

Kx2

csgn x x

Kx2

KI

The assume command will ensure that whenever Maple does a calcution involving x, it will assume

> >

• •

(2.2.1)(2.2.1)

(2.1.1)(2.1.1)

(2.2.2)(2.2.2)

> >

(2.2.3)(2.2.3)

> >

> >

(1.1.2)(1.1.2)

(2.1.5)(2.1.5)

> >

> >

that x is real. If you would rather Maple just make the assumption for one calculation, then you
can use assuming:
simplify(cos(n*Pi));
simplify(cos(n*Pi)) assuming(n,integer);
simplify(sin(n*Pi));
simplify(sin(n*Pi)) assuming(n,integer);

cos n p

K1 n

sin n p

0

Working with and solving equations
restart;

A Maple variable can actually be an equation, or set of equations. Generally, any command that
can be applied to an expression without an equal sign will work on an equation by operating
separately on the left and right hand sides:
eq := (a^2 - b^2)/(a-b) = tan(theta)/sin(theta);
eq := simplify(eq);

eq :=
a2 K b2

aK b
=

tan q
sin q

eq := aC b =
1

cos q

But certain commands only work on equations, like the closely related solve and isolate:
solve(eq,theta);
isolate(eq,theta);

arccos
1

aC b

q = arccos
1

aC b

The difference between the two is that isolate returns an equation with the desired variable on
the left, while solve gives only the solution for the desired variable. Actually, the first argument of
solve can be any expression that is understood to be equal to zero:
eq := a*x^2+b*x+c;
sol := solve(eq,x);
sol := [sol];

eq := a x2 C b xC c

sol :=
1
2

KbC K4 a cC b2

a
, K

1
2

bC K4 a cC b2

a

sol :=
1
2

KbC K4 a cC b2

a
, K

1
2

bC K4 a cC b2

a

Notice that here, solve returned the two possible solutions for x separated by a comma. The

> >

• •

> >

(2.1.1)(2.1.1)

(2.2.6)(2.2.6)

(2.2.7)(2.2.7)

(2.2.4)(2.2.4)

> >

(1.1.2)(1.1.2)

> >

> >

(2.2.5)(2.2.5)

> >

third line takes this output and puts it into a list. We can check that we really have solutions by
using the subs command to substitute our solutions back into the original expression:
subs(x=sol[1],eq);
simplify(%);

1
4

KbC K4 a cC b2

2

a
C

1
2

b KbC K4 a cC b2

a
C c

0

Some care must be used with the isolate command for equations with multiple solutions. We see
that when we use solve on a quadratic equation, we sucessfully find both roots, but when we use
isolate, we only get one root:
eq := x^2 + 7*x + 12 = 0;
solve(eq);
isolate(eq,x);

Here is another example where we solve three equations (given as a set), for the three variables
(which are returned as a set). The subs command is used to pick out the particular solution for x, y
and z, which we call x_sol, etc...
eqs := {2*a = x + y + z, 4*b=2*x + z, -4*c = z+y};
sol := solve(eqs,{x,y,z});
x_sol := subs(sol,x);
y_sol := subs(sol,y);
z_sol := subs(sol,z);

eqs := 2 a = xC yC z, 4 b = 2 xC z, K4 c = z C y

sol := x = 2 aC 4 c, y = 4 cK 4 bC 4 a, z = 4 bK 4 aK 8 c

x_sol := 2 aC 4 c

y_sol := 4 cK 4 bC 4 a

z_sol := 4 bK 4 aK 8 c

If solve fails to find an analytic solution to your problem, fsolve can sometimes find a numeric
one:
eq := sin(x)-x+1/sqrt(2);
solve(eq);
sol := fsolve(eq);
simplify(subs(x=sol,eq));

eq := sin x K xC
1
2

 2

RootOf 2 _Z K 2 sin _Z K 2

sol := 1.698911280

K7. 10-10

Here, fsolve gives x = 1.69 ..., which satisfies eq = 0 to numeric accuracy. Finally, here are
some examples of the useful lhs, rhs and (lhs-rhs) commands:
eq := r^2 + 35 = 75*n + arctanh(r^4);
lhs(eq);
rhs(eq);
(lhs-rhs)(eq);

eq := r2 C 35 = 75 nC arctanh r4

> >

• •

(2.1.1)(2.1.1)

(2.2.7)(2.2.7)

> >

> >

> >

(1.1.2)(1.1.2)

(3.1.1)(3.1.1)

(3.1.2)(3.1.2)

(3.1.4)(3.1.4)

(3.1.3)(3.1.3)

> >

r2 C 35

75 nC arctanh r4

r2 C 35K 75 nK arctanh r4

Functions and calculus

Defining functions as mappings
A mapping in Maple is an object that takes a finite number of arguments, applies some operations
to them, and returns a final result. Hence, it is the Maple equivalent of a mathematical function.
Mappings are defined as follows:
f := x -> x^2;

f := x/x2

This mapping is called f. It takes a single argument x and returns its square. I can call f with all
sorts of arguments:
f(x);
f(4);
f(sin(x));
expand(f(5+I*y));

x2

16

sin x 2

25C 10 I yK y2

Mappings can also be defined with several arguments, and in terms of other mappings:
g := (x,y) -> x/y*sin(x*y) + f(y);
g(4,p);

g := x, y /
x sin x y

y
C f y

4 sin 4 p
p

C p2

Note that one can also define sort of ``pseudo-functions'' by indescriminate use of :=, as shown
here
h(x) := x^3;
h(4);

h x := x3

h 4

As you can see, h x is not really a function at all, because Maple doesn't know how to evaluate
h 4 . Moral: to define a function, use mapping notation.

Differentiating and integrating
Differentiating with the "diff" command

> >

• •

> >

(2.1.1)(2.1.1)

> >

(2.2.7)(2.2.7)

> >

(3.2.2.1)(3.2.2.1)

> >

(3.2.1.4)(3.2.1.4)

(1.1.2)(1.1.2)

> >

> >

(3.2.2.2)(3.2.2.2)

> >

(3.2.1.1)(3.2.1.1)

(3.2.1.2)(3.2.1.2)

(3.2.1.3)(3.2.1.3)

restart;
The derivative of f x with respect to x is simply given by:
a := diff(f(x),x);

a :=
d
dx

 f x

Partial and higher order derivatives are straightforward generalizations of this:
b := diff(g(u,v),u,u,u,v,v,u,u);

b := v7

vv2 vu5 g u, v

Derivatives are calculated explicitly if the quantity being differentiated is known explicitly:
f := x -> exp(sin(x) + sin(tanh(x)));
simplify(a);
diff(tan(x),x,x);

f := x/esin x C sin tanh x

Kcos tanh x tanh x 2 C cos x C cos tanh x esin x C sin tanh x

2 tan x 1C tan x 2

You can even differentiate equations:
eq := x^2 = tan(x)^(1/4);
diff(eq,x);

eq := x2 = tan x 1 / 4

2 x =
1
4

1C tan x 2

tan x 3 / 4

Differentiating with the D operator
The D operator differentiates an expression with respect to it's argument(s), while diff
differentiates with respect to variables. This best illustrated by example:
f := x -> sin(x);
a := diff(f(q(x)),x);
b := D(f)(q(x));

f := x/sin x

a := cos q x
d
dx

 q x

b := cos q x

In this example, diff uses the chain rule to evaluate
d

d x
f q x = f ' q x q ' x , while

D f q x = f ' x essentially returns "f prime" evaluated at q x . It is the difference
between substituting in q x for x in f x and then differentiating, and differentiating f x first
and then substituting q x for x. The notation for partial and multiple derivatives is
U := (x,y) -> exp(I*omega*x) + exp(beta*y);
D[1](U)(x+4,y);
D[2](U)(x,y^35);
D[1,2](U)(x,y);

U := x, y /eI w xC eb y

> >

> >

• •

(2.1.1)(2.1.1)

> >

(2.2.7)(2.2.7)

(1.1.2)(1.1.2)

> >

(3.2.2.2)(3.2.2.2)

> >

(3.2.3.1)(3.2.3.1)

(3.2.3.2)(3.2.3.2)

I w eI w x C 4

b eb y35

0

Note that D is another protected symbol:
D := 4;

Error, attempting to assign to `D` which is protected. Try
declaring `local D`; see ?protect for details.

Integrating
Integration is implemented using the int command. Like diff, the command needs at least
two arguments, the first is the function to be integrated, and the second is the integration
variable. First, we give some examples of indefinite integration:
restart;
int(exp(I*beta*q),q);
f := x -> sin(x)^3*cos(2*x)/(1-2*tan(x))^2;
simplify(int(f(x),x));

K
I eI b q

b

f := x/
sin x 3 cos 2 x

1K 2 tan x 2

1
9375

1

cos x K 2 sin x
750 cos x 6 C 1500 cos x 5 sin x K 475 cos x 4

K 1950 cos x 3 sin x

C 168 arctanh
1
5

5 K1C cos x K 2 sin x

sin x
 cos x 5

K 336 arctanh
1
5

5 K1C cos x K 2 sin x

sin x
 sin x 5

K 425 cos x 2 K 950 cos x sin x C 910 cos x K 1820 sin x C 1060

Note that indefinite integrals omit the "arbitrary constant", just as most tables do. Now, some
definite integrals:
int(F(x),x=a..b);
int(sin(omega)^2,omega=0..3*Pi);
A := int(exp(-a*x^2),x=-infinity...infinity);
assume(a>0);
simplify(A);

a

b
F x dx

3
2

 p

> >

• •

(2.1.1)(2.1.1)

(2.2.7)(2.2.7)

> >

(1.1.2)(1.1.2)

> >

(3.2.2.2)(3.2.2.2)

(3.2.3.3)(3.2.3.3)

(3.2.3.2)(3.2.3.2)

A :=
p

a
csgn a = 1

N otherwise

p

a~

We can even define functions in terms of integrals using this mapping notation. The following

function x r, M satisfies the differential equation
v

v r
x r, M =

1
f r, M

 and appears

prominently in the theory of black holes:
restart;
define the function [normalized such that x(3*M)=0]

 f := (r,M) -> 1 - 2*M/r;
 x := (r,M) -> int(1/f(u,M),u=3*M..r);

define the ODE that it satisfies

 ode := diff(X(r,M),r) - 1/f(r,M) = 0;

verfify that it really satisfies the ODE

 subs(X(r,M)=x(r,M),ode);
 simplify(%);

numerically evaluate the function when M = 4 and r = 10

 evalf(x(10,4));

f := r, M /1K
2 M

r

x := r, M /

3 M

r
1

f u, M
du

ode :=
v

vr
 X r, M K

1

1K
2 M

r

= 0

v

vr

3 M

r

1

1K
2 M
u

du K
1

1K
2 M

r

= 0

0 = 0

K7.545177445

Finally, there are plenty of integrals Maple cannot do. When this happens, int returns then
integral printed in a pretty form. You can evaluate such annoyances numerically by using
evalf:

> >

• •

(2.1.1)(2.1.1)

(2.2.7)(2.2.7)

> >

(1.1.2)(1.1.2)

> >

(3.2.2.2)(3.2.2.2)

> >

(3.2.3.4)(3.2.3.4)

> >

(3.2.3.2)(3.2.3.2)

gnat := int(sqrt(sin(x)+exp(x)),x=3..Pi);
gnat := evalf(int(sqrt(sin(x)+exp(x)),x=3..Pi));

gnat :=
3

p
sin x C ex dx

gnat := 0.6586659653

Plots

2-D plotting
Simple plots of functions are achieved with the plot command. Here is a plot of sin x for
x 2 0, 4p :
plot(sin(x),x=0..4*Pi);

x

p
2

p 3 p
2

2 p 5 p
2

3 p 7 p
2

4 p

K1

K0.5

0

0.5

1

If you want to plot multiple functions of the same variable, include them as a list:
f,g,h := x -> x^2, x -> (5*x^3-4)/10, x -> cosh(x)-exp(x/2);
functions := [f(x),g(x),h(x)];
plot(functions,x=-1..1,color=[blue,magenta,red],style=[line,
point,line]);

f, g, h := x/x2, x/
1
2

 x3 K
2
5

, x/cosh x K e
1
2

 x

functions := x2,
1
2

 x3 K
2
5

, cosh x K e
1
2

 x

> >

• •

(2.1.1)(2.1.1)

(1.1.2)(1.1.2)

> >

(3.2.2.2)(3.2.2.2)

(2.2.7)(2.2.7)

> >

> >

(3.2.3.4)(3.2.3.4)

(3.2.3.2)(3.2.3.2)

x
K1 K0.5 0 0.5 1

K0.8

K0.6

K0.4

K0.2

0.2

0.4

0.6

0.8

1

Parametric plots are defined by a list structure [x(t),y(t),t=t1..t2]:
Curve := [exp(t/10)*cos(t),exp(t/10)*sin(t),t=-4*Pi..4*Pi];
plot(Curve);

Curve := e
1
10

 t
 cos t , e

1
10

 t
 sin t , t = K4 p ..4 p

> >

• •

(2.1.1)(2.1.1)

(1.1.2)(1.1.2)

> >

(3.2.2.2)(3.2.2.2)

(2.2.7)(2.2.7)

> >

> >

(3.2.3.4)(3.2.3.4)

(3.2.3.2)(3.2.3.2)

K2 K1 0 1 2 3

K3

K2

K1

1

2

You can also plot 2-dimensional datapoints if they are represented by a list of lists: [[x1,y1],
[x2,y2],[x3,y3],...]. By default, Maple draws a straight line between successive points.
If you just want the points, use the style = point option. In this example, we use the seq
command in a mapping to generate the datapoints of an N-sided regular polygon inscribed on a
circle:
Polygon := N -> [seq([cos(2*Pi*n/N),sin(2*Pi*n/N)],n=0..N)];
Polygon(5);
plot([seq(Polygon(N),N=3..8)],axes=none,thickness=10,scaling=
constrained);

Polygon := N/ seq cos
2 p n

N
, sin

2 p n
N

, n = 0 ..N

1, 0 , cos
2
5

 p , sin
2
5

 p , Kcos
1
5

 p , sin
1
5

 p , Kcos
1
5

 p ,

Ksin
1
5

 p , cos
2
5

 p , Ksin
2
5

 p , 1, 0

> >

• •

(2.1.1)(2.1.1)

(2.2.7)(2.2.7)

(4.1.1)(4.1.1)

(1.1.2)(1.1.2)

> >

(3.2.2.2)(3.2.2.2)

> >

(3.2.3.4)(3.2.3.4)

> >

(3.2.3.2)(3.2.3.2)

Here, we plotted six separate datasets by nested use of the seq command. The optional argument
supressed the drawing of axes, set the line thickness to 10 point, and adjusted the vertical and
horizontal scales to make sure a square looks like a square. In and of itself, this simple plot
command is capable of much more than mentioned here, see ?plot for details. Even more
plotting capability is achieved by loading the plots or plottools packages:
with(plots);
with(plottools);

animate, animate3d, animatecurve, arrow, changecoords, complexplot, complexplot3d,

conformal, conformal3d, contourplot, contourplot3d, coordplot, coordplot3d,

densityplot, display, dualaxisplot, fieldplot, fieldplot3d, gradplot, gradplot3d,

implicitplot, implicitplot3d, inequal, interactive, interactiveparams, intersectplot,

listcontplot, listcontplot3d, listdensityplot, listplot, listplot3d, loglogplot, logplot,

matrixplot, multiple, odeplot, pareto, plotcompare, pointplot, pointplot3d, polarplot,

polygonplot, polygonplot3d, polyhedra_supported, polyhedraplot, rootlocus,

semilogplot, setcolors, setoptions, setoptions3d, spacecurve, sparsematrixplot,

surfdata, textplot, textplot3d, tubeplot

annulus, arc, arrow, circle, cone, cuboid, curve, cutin, cutout, cylinder, disk,

dodecahedron, ellipse, ellipticArc, getdata, hemisphere, hexahedron, homothety,

> >

> >

• •

(2.1.1)(2.1.1)

> >

(2.2.7)(2.2.7)

• •

• •

(4.1.1)(4.1.1)

(1.1.2)(1.1.2)

> >

(3.2.2.2)(3.2.2.2)

> >

(3.2.3.4)(3.2.3.4)

• •

(3.2.3.2)(3.2.3.2)

hyperbola, icosahedron, line, octahedron, parallelepiped, pieslice, point, polygon,

prism, project, rectangle, reflect, rotate, scale, sector, semitorus, sphere, stellate,

tetrahedron, torus, transform, translate

The stuff in the square brackets are the new commands that are available after the packages are
loaded. There are a lot of them, and quite frankly the effects of some of them are easy to achieve
with more elementary commands. That said, some are quite useful, such as logplot which
generates log-linear plots, etc. Some plotting comments:

All 2D Maple plots consist of lists of data points that are graphically interpreted by the front-
end software. Whenever possible, an adaptive plotting scheme is used that concentrates the
datapoints wherever function derivatives are large. Usually this gives satisfactory results.
However, if you find a particular plot looks bad, try the optional numpoints argument, which
forces Maple to use more points to render the plot.

The display command in the plots package has a lot of uses, including a rapid way to choose
plot parameters without recalcuting the data. See ?plots/display

The range of the axes can be altered in a number of ways. The following three commands
generate the same plot of sin x :
plot(sin(x),x=-Pi..Pi,-3..3):
plot(sin(x),x=-Pi..Pi,view=[default,-3..3]):
plot(sin(x),x=-500..500,view=[-Pi..Pi,-3..3]):

3-D plotting
3D plots are generated with the "plot3d" command. Here is a plot of the imaginary part of the 2nd
order Bessel function of the first kind in a region of the complex plane defined by
K5 ! Re z ! 5 and K1 ! Im z ! 1.
f := (x,y) -> Im(BesselJ(2,x+I*y));
plot3d(f(x,y),x=-5..5,y=-1..1,axes=boxed);

f := x, y /I BesselJ 2, xC I y

> >

• •

> >

(2.1.1)(2.1.1)

(2.2.7)(2.2.7)

(4.1.1)(4.1.1)

(1.1.2)(1.1.2)

> >

(3.2.2.2)(3.2.2.2)

> >

(3.2.3.4)(3.2.3.4)

> >

(3.2.3.2)(3.2.3.2)

If you are viewing these notes in the worksheet form, by clicking and dragging on the above plot
you will be able to rotate and resize it. Also, some buttons will appear in the above toolbar that let
you change the axes, style of rendering, etc. Most of this functionality is also available from the
command line, see ?plot3d. One can accomplish truly useless things with the animate facilities,
execute the following command to see some sort of circular wave propagating on a disk (remove
the colon and replace with a semi-colon):
animate3d([r*cos(phi),r*sin(phi),cos(t-r)],r=0..10,phi=0..2*
Pi,t=0..20,frames=50,scaling=constrained,axes=none):

In this instance, I have defined a surface parametrically as x = x r, f, t , y = y r, f, t , and
z = z r, f, t , where t is time. Click on the plot and press play in the toolbar to see the movie.

Procedures and programming

Basic procedure syntax
restart;

Procedures are the like the Maple version of subroutines in a traditional programming language. A
mapping is a rudimentary procedure. For example, f and g here accomplish the same thing, even
though the former is a mapping and the latter is a procedure:

> >

• •

• •

> >

(5.1.1)(5.1.1)

(2.1.1)(2.1.1)

• •

(2.2.7)(2.2.7)

> >

(5.1.3)(5.1.3)

• •

(4.1.1)(4.1.1)

(1.1.2)(1.1.2)

> >

(3.2.2.2)(3.2.2.2)

• •

> >

(5.1.2)(5.1.2)

(3.2.3.4)(3.2.3.4)

> >

(3.2.3.2)(3.2.3.2)

f := x -> x^2 + sin(x)^2;
g := proc(x)
 x^2 + sin(x)^2
end proc;
f(5);
g(5);

f := x/x2 C sin x 2

g := proc x x^2C sin x ^2 end proc

25C sin 5 2

25C sin 5 2

As a matter of style, it is useful to format procedures as above, with different commands on
different lines. But this is not necessary:
g := proc(x) x^2 + sin(x)^2 end proc;

g := proc x x^2C sin x ^2 end proc

Of course, we can have more complicated procedures. This procedure take a mapping and an
integer N as its argument and returns the Nth order Fourier approximation:
Fourier := proc(f,N,x)
 local a,b:
 a := n -> 1/Pi*int(f(x)*cos(n*x),x=-Pi..Pi):
 b := n -> 1/Pi*int(f(x)*sin(n*x),x=-Pi..Pi):
 1/2*a(0) + sum(a(n)*cos(n*x),n=1..N) + sum(b(n)*sin(n*x),n=
1..N):
end proc;

Fourier := proc f, N, x

local a, b;

a := n/int f x * cos n * x , x = K p ..p /p;

b := n/int f x * sin n * x , x = K p ..p /p;

1 / 2 * a 0 C sum a n * cos n * x , n = 1 ..N C sum b n * sin n * x , n = 1 ..N

end proc

Several matters of syntax arise in this example:

The second line declares that a and b are local variables in this procedure. This means that even
though I define them within the procedure, the Maple environment outside the procedure does
not know about them. Practically, this means that if I define a := 5 and then run/call the
procedure, a will still be equal to 5 after the procedure is run.

As in the ordinary worksheet environment, separate commands must be separated by colons or
semi-colons. The difference is that it doesn't matter which --- whether or not a given procedure
produces printed output depends on whether or not is called with a colon or semi-colon. As
usual, if you mess-up the punctuation you will generate an error when you execute the group in
which the procedure definition occurs

All procedures end with an "end proc". The nature of the character after this command
determines if Maple prints out the procedure definition.

The output of a procedure is the last line executed before end proc. This behaviour can be

> >

• •

> >

(5.1.1)(5.1.1)

(2.1.1)(2.1.1)

• •

(2.2.7)(2.2.7)

> >

(5.2.1)(5.2.1)

(4.1.1)(4.1.1)

(1.1.2)(1.1.2)

> >

(3.2.2.2)(3.2.2.2)

> >

> >

(3.2.3.4)(3.2.3.4)

(3.2.3.2)(3.2.3.2)

modified by the use of an explicit return command, but this is usually unnecessary (not
always, see ?return)

Let's explore the behaviour of the procedure defined above:
choose a function to decompose
 a := x -> (x+Pi)^4;
generate a Fourier approximation accurate to 2nd order (and
simplify the output of Fourier)
 simplify(Fourier(a,2,q));
choose a different function to analyze
 b := x -> (x^3+x^2-5*x+2);
this time, create a plot of the function (red, thick line)
and the 5th order approximation (blue, thin line)
 plot([b(x),Fourier(b,5,x)],x=-Pi..Pi,axes=boxed,color=[red,
blue],thickness=[2,0]);

a := x/ xC p
4

K16 p
3
 sin q cos q C 16 p

3
 sin q C 12 p sin q cos q K 48 p sin q C

16
5

 p
4

C 16 p
2
 cos q 2 K 32 p

2
 cos q K 8 p

2
K 6 cos q 2 C 48 cos q C 3

b := x/x3 C x2 K 5 xC 2

x

Kp
K
p
4

0 p
4

p
2

3 p
4

p

0

5

10

15

20

25

Conditional if...then..else statements
Conditional if..then..else statements are ubiquitous in procedures. Here is a procedure that
tests if its argument is a half-integer (-1/2,1/2,3/2,etc..):
HalfInteger := proc(x):
 if (type(x,integer)) then:
 false:
 elif (type(2*x,integer)) then:
 true:
 else:

> >

• •

> >

(5.1.1)(5.1.1)

(5.2.2)(5.2.2)

(2.1.1)(2.1.1)

• •

(2.2.7)(2.2.7)

> >

(5.2.1)(5.2.1)

> >

(4.1.1)(4.1.1)

(1.1.2)(1.1.2)

> >

(3.2.2.2)(3.2.2.2)

> >

(5.2.3)(5.2.3)

> >

> >

(3.2.3.4)(3.2.3.4)

(5.3.1)(5.3.1)

(3.2.3.2)(3.2.3.2)

 false:
 fi:
end proc:
HalfInteger(3/2+Pi);
HalfInteger(-105/2);
HalfInteger(200/2);
HalfInteger(blueberry);

false

true

false

false

In this procedure, the last line of output depends on what type of argument we have. The true
and false quantities are special in Maple because there are the arguments of if/then structures.
Indeed, true/false is what the type function returns:
type(5,prime);
type(6,prime);

true

false

Because our HalfInteger procedure is true/false valued, it can be used in further
if/then statements:
PositiveHalfInteger := proc(x):
 if (HalfInteger(x) and x > 0) then:
 `Congratulations! You have found a positive half-
integer! Call Sweden!`:
 else:
 `I am sorry. This is not what we are looking for.
Please don't give up.`:
 fi:
end proc:
PositiveHalfInteger(-5/2);
PositiveHalfInteger(5/2);

I am sorry. This is not what we are looking for. Please don't give up.

Congratulations! You have found a positive half-integer! Call Sweden!

Repetitive statements (loops)
Also ubiquitous in many procedures are repetition loops. Like the conditional statements above,
they don't actually have to appear in procedures:
for i from 40 to -11 by -7 do:
 print(i):
od:

40

33

26

19

12

5

> >

• •

> >

(5.1.1)(5.1.1)

(2.1.1)(2.1.1)

• •

(2.2.7)(2.2.7)

> >

(5.2.1)(5.2.1)

> >

(4.1.1)(4.1.1)

(1.1.2)(1.1.2)

> >

(3.2.2.2)(3.2.2.2)

> >

> >

(3.2.3.4)(3.2.3.4)

(5.3.2)(5.3.2)

(5.3.1)(5.3.1)

(3.2.3.2)(3.2.3.2)

K2

K9

The for..while..do structure is implemented in this procedure, which finds the smallest
prime number in a given range of integers:
FindSmallestPrime := proc(low,high)
 local CONTINUE,i:
 CONTINUE := true:
 for i from low to high while (CONTINUE) do:
 if (type(i,prime)) then:
 print(i):
 CONTINUE := false:
 fi:
 od:
 if (CONTINUE) then print(`no primes in range`) fi:
end proc:

In this case, the while statement causes the for loop to terminate as soon as a prime number is
found.
FindSmallestPrime(23211432,432450443590);
FindSmallestPrime(152,155);

23211437

no primes in range

